Citation: ZHOU Shichao, FENG Guitao, XIA Dongdong, LI Cheng, WU Yonggang, LI Weiwei. Star-Shaped Electron Acceptor based on Naphthalenediimide-Porphyrin for Non-Fullerene Organic Solar Cells[J]. Acta Physico-Chimica Sinica, ;2018, 34(4): 344-347. doi: 10.3866/PKU.WHXB201709112 shu

Star-Shaped Electron Acceptor based on Naphthalenediimide-Porphyrin for Non-Fullerene Organic Solar Cells

  • Corresponding author: LI Cheng, licheng1987@iccas.ac.cn WU Yonggang, wuyonggang@hbu.edu.cn LI Weiwei, liweiwei@iccas.ac.cn
  • Received Date: 11 August 2017
    Revised Date: 6 September 2017
    Accepted Date: 7 September 2017
    Available Online: 11 April 2017

    Fund Project: the Strategic Priority Research Program XDB12030200the National Natural Science Foundation of China 21574138the National Natural Science Foundation of China 21474026The project was supported by the National Natural Science Foundation of China (51773207, 21574138, 51603209, 91633301, 21474026) and the Strategic Priority Research Program (XDB12030200) of the Chinese Academy of Sciencesthe National Natural Science Foundation of China 51773207the National Natural Science Foundation of China 51603209the National Natural Science Foundation of China 91633301

  • Non-fullerene organic solar cells are of broad and current interest in the field of organic solar cells, and show promising application in high performance solar cells. When designing conjugated molecules as non-fullerene materials, several parameters, such as absorption, energy levels, charge transport, and crystallinity should be considered. Among them, absorption spectra are an important parameter that determine the efficiency of sun-light harvesting. In this work, we explore a new near-infrared electron acceptor naphthalenediimide-porphyrin (NDI-Por) by using electron-donating porphyrin as the core, and four NDI as end groups with ethynyl as linkers attached to the meso-position of porphyrin. This star-shaped molecule exhibits absorption spectra up to 900 nm. NDI-Por was incorporated into non-fullerene solar cells as an electron acceptor, and together with a wide-band gap polymer donor, an initial power conversion efficiency of 1.80% could be achieved. In particular, the solar cells exhibit a broad photo-response from 300 to 900 nm. Our results demonstrate that it is an efficient strategy to incorporate porphyrin into conjugated molecules to realize non-fullerene materials with near-infrared absorption spectra.
  • 加载中
    1. [1]

      Li, Y. Acc. Chem. Res. 2012, 45, 723. doi: 10.1021/ar2002446

    2. [2]

      Zhao, Y. F.; Zou, W. J.; Li, H.; Lu, K.; Yan, W.; Wei, Z. X. Chin. J. Polym. Sci. 2017, 35, 261. doi: 10.1007/s10118-017-1875-z

    3. [3]

      Krebs, F. C.; Espinosa, N.; Hösel, M.; Søndergaard, R. R.; Jørgensen, M. Adv. Mater. 2014, 26, 29. doi: 10.1002/adma.201302031

    4. [4]

      Lu, L.; Zheng, T.; Wu, Q.; Schneider, A. M.; Zhao, D.; Yu, L. Chem. Rev. 2015, 115, 12666. doi: 10.1021/acs.chemrev.5b00098  doi: 10.1021/acs.chemrev.5b00098

    5. [5]

      Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789. doi: 10.1126/science.270.5243.1789

    6. [6]

      Wienk, M. M.; Kroon, J. M.; Verhees, W. J. H.; Knol, J.; Hummelen, J. C.; van Hal, P. A.; Janssen, R. A. J. Angew. Chem. Int. Ed. 2003, 42, 3371. doi: 10.1002/anie.2003516547

    7. [7]

      Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. Adv. Mater. 2015, 27, 1170. doi: 10.1002/adma.201404317

    8. [8]

      Jiang, W.; Ye, L.; Li, X.; Xiao, C.; Tan, F.; Zhao, W.; Hou, J.; Wang, Z. Chem. Commun. 2014, 50, 1024. doi: 10.1039/C3CC47204C

    9. [9]

      Nielsen, C. B.; Holliday, S.; Chen, H. Y.; Cryer, S. J.; McCulloch, I. Acc. Chem. Res. 2015, 48, 2803. doi: 10.1021/acs.accounts.5b00199

    10. [10]

      Zhang, S. Q.; Hou, J. H. Acta Phys. -Chim. Sin. 2017, 33, 2327.

    11. [11]

      Yang, F.; Li, C.; Feng, G.; Jiang, X.; Zhang, A.; Li, W. Chin. J. Polym. Sci. 2017, 35, 239. doi: 10.1007/s10118-017-1870-4

    12. [12]

      Zhao, R. Y.; Dou, C. D.; Liu, J.; Wang, L. X. Chin. J. Polym. Sci. 2017, 35, 198. doi: 10.1007/s10118-017-1878-9

    13. [13]

      Shao, R.; Yang, X. B.; Yin, S. W.; Wang, W. L. Acta Chim. Sin. 2016, 74, 676.

    14. [14]

      Liu, Y.; Zhang, Z.; Feng, S.; Li, M.; Wu, L.; Hou, R.; Xu, X.; Chen, X.; Bo, Z. J. Am. Chem. Soc. 2017, 139, 3356. doi: 10.1021/jacs.7b00566

    15. [15]

      Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. J. Am. Chem. Soc. 2017, 139, 7148. doi: 10.1021/jacs.7b02677  doi: 10.1021/jacs.7b02677

    16. [16]

      Liu, J.; Chen, S.; Qian, D.; Gautam, B.; Yang, G.; Zhao, J.; Bergqvist, J.; Zhang, F.; Ma, W.; Ade, H.; Ingan s, O.; Gundogdu, K.; Gao, F.; Yan, H. Nat. Energy 2016, 1, 16089. doi: 10.1038/nenergy.2016.89

    17. [17]

      Meng, D.; Sun, D.; Zhong, C.; Liu, T.; Fan, B.; Huo, L.; Li, Y.; Jiang, W.; Choi, H.; Kim, T.; Kim, J. Y.; Sun, Y.; Wang, Z.; Heeger, A. J. J. Am. Chem. Soc. 2016, 138, 375. doi: 10.1021/jacs.5b11149

    18. [18]

      Jiang, X.; Xu, Y.; Wang, X.; Yang, F.; Zhang, A.; Li, C.; Ma, W.; Li, W. Polym. Chem. 2017, 8, 3300. doi: 10.1039/C7PY00444C

    19. [19]

      Lin, Y.; He, Q.; Zhao, F.; Huo, L.; Mai, J.; Lu, X.; Su, C. J.; Li, T.; Wang, J.; Zhu, J.; Sun, Y.; Wang, C.; Zhan, X. J. Am. Chem. Soc. 2016, 138, 2973. doi: 10.1021/jacs.6b00853

    20. [20]

      Cheng, P.; Zhang, M.; Lau, T. K.; Wu, Y.; Jia, B.; Wang, J.; Yan, C.; Qin, M.; Lu, X.; Zhan, X. Adv. Mater. 2017, 29, 1605216. doi: 10.1002/adma.201605216

    21. [21]

      Yang, F.; Li, C.; Lai, W.; Zhang, A.; Huang, H.; Li, W. Mater. Chem. Front. 2017, 1, 1389. doi: 10.1039/C7QM00025A

    22. [22]

      Yang, Y.; Zhang, Z. G.; Bin, H.; Chen, S.; Gao, L.; Xue, L.; Yang, C.; Li, Y. J. Am. Chem. Soc. 2016, 138, 15011. doi: 10.1021/jacs.6b09110

    23. [23]

      Lin, Y.; Zhao, F.; Wu, Y.; Chen, K.; Xia, Y.; Li, G.; Prasad, S. K. K.; Zhu, J.; Huo, L.; Bin, H.; Zhang, Z. G.; Guo, X.; Zhang, M.; Sun, Y.; Gao, F.; Wei, Z.; Ma, W.; Wang, C.; Hodgkiss, J.; Bo, Z.; Ingan s, O.; Li, Y.; Zhan, X. Adv. Mater. 2017, 29, 1604155. doi: 10.1002/adma.201604155  doi: 10.1002/adma.201604155

    24. [24]

      Zhang, A.; Li, C.; Yang, F.; Zhang, J.; Wang, Z.; Wei, Z.; Li, W. Angew. Chem. Int. Ed. 2017, 56, 2694. doi: 10.1002/anie.201612090  doi: 10.1002/anie.201612090

    25. [25]

      Yen, W. N.; Lo, S. S.; Kuo, M. C.; Mai, C. L.; Lee, G. H.; Peng, S. M.; Yeh, C. Y. Org. Lett. 2006, 8, 4239. doi: 10.1021/ol061478w

    26. [26]

      Guo, Y.; Zhang, A.; Li, C.; Li, W.; Zhu, D. Chin. Chem. Lett. 2017. doi: 10.1016/j.cclet.2017.08.006

    27. [27]

      Liu, Y.; Zhang, L.; Lee, H.; Wang, H. W.; Santala, A.; Liu, F.; Diao, Y.; Briseno, A. L.; Russell, T. P. Adv. Energy Mater. 2015, 5, 1500195. doi: 10.1002/aenm.201500195  doi: 10.1002/aenm.201500195

  • 加载中
    1. [1]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    2. [2]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    3. [3]

      Xian BISisi WANGJinyue ZHANGYujia PENGZhen SHENHua LU . Discovery, development, and perspectives of circularly polarized luminescent materials based on β-isoindigo skeletons. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1049-1057. doi: 10.11862/CJIC.20240456

    4. [4]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    5. [5]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    6. [6]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    7. [7]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

    8. [8]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    9. [9]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    10. [10]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    11. [11]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    12. [12]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    13. [13]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    14. [14]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    15. [15]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    16. [16]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    17. [17]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    18. [18]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    19. [19]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    20. [20]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

Metrics
  • PDF Downloads(9)
  • Abstract views(507)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return