Citation: XU Jiale, HU Lei, WANG Lu, DENG Jinxia, CHEN Jun, XING Xianran. Controllable Thermal Expansion and Crystal Structure of (Fe1-xNix)ZrF6 Solid Solutions[J]. Acta Physico-Chimica Sinica, ;2018, 34(4): 339-343. doi: 10.3866/PKU.WHXB201709081 shu

Controllable Thermal Expansion and Crystal Structure of (Fe1-xNix)ZrF6 Solid Solutions

  • Corresponding author: CHEN Jun, Junchen@ustb.edu.cn
  • Received Date: 9 August 2017
    Revised Date: 6 September 2017
    Accepted Date: 7 September 2017
    Available Online: 8 April 2017

    Fund Project: the National Natural Science Foundation of China 21231001the Fundamental Research Funds for the Central Universities, China FRF-TP-14-012C1the National Natural Science Foundation of China 91422301The project was supported by the National Natural Science Foundation of China (91422301, 21231001) and the Fundamental Research Funds for the Central Universities, China (FRF-TP-14-012C1)

  • Most materials expand on heating and contract on cooling. In the recent years, however, some compounds have been found to exhibit abnormal negative thermal expansion (NTE) behavior; this presents an opportunity to adjust the coefficient of thermal expansion (CTE) of such materials. It is especially important to obtain controllable thermal expansion in isotropic compounds. Herein, we report the preparation, crystal structure, and controllable thermal expansion in double ReO3-type (Fe1-xNix)ZrF6 solid solutions. (Fe1-xNix)ZrF6 exhibits full range solubility. A controllable thermal expansion of (Fe1-xNix)ZrF6 could be achieved by the chemical substitution of Ni2+ for Fe2+ over a wide range of CTE from −3.24 × 10−6 to +18.23 × 10−6 K−1 (300–675 K). In particular, zero thermal expansion was obtained for the composition (Fe0.5Ni0.5)ZrF6. As a kind of typical framework structure, the transverse thermal vibrations of fluorine atoms are expected to play a critical role in the thermal expansion behavior of double-ReO3 compounds. This study presents a potential method to tune the thermal expansion of NTE (negative thermal expansion) families which have an open framework structure.
  • 加载中
    1. [1]

      Mary, T. A.; Evans, J. S. O.; Vogt, T.; Sleightet, A. W. Science 1996, 272 (5258), 90. doi: 10.1126/science.272.5258.90  doi: 10.1126/science.272.5258.90

    2. [2]

      Greve, B. K.; Martin, K. L.; Lee, P. L.; Chupas, P. J.; Chapman, K. W.; Wilkinson, A. P. J. Am. Chem. Soc. 2010, 132 (44), 15496. doi: 10.1021/ja106711v  doi: 10.1021/ja106711v

    3. [3]

      Lock, N.; Wu, Y.; Christensen, M.; Cameron, L. J.; Peterson, V. K.; Bridgeman, A. J.; Kepert, C. J.; Iversen, B. B. J. Phys. Chem. C 2010, 114 (39), 16181. doi: 10.1021/jp103212z  doi: 10.1021/jp103212z

    4. [4]

      Mohn, P. Nature 1999, 400 (6739), 18. doi: 10.1038/21778  doi: 10.1038/21778

    5. [5]

      Takenaka, K.; Takagi, H. Appl. Phys. Lett. 2005, 87 (26), 261902. doi: 10.1063/1.2147726  doi: 10.1063/1.2147726

    6. [6]

      Deng, S.; Sun, Y.; Wu, H.; Huang, Q.; Yan, J.; Shi, K.; Malik, M. I.; Lu, H.; Wang, L.; Huang, R.; Li, L.; Wang, C. Chem. Mater. 2015, 27 (7), 2495. doi: 10.1021/cm504702m  doi: 10.1021/cm504702m

    7. [7]

      Chen, J.; Nittala, K.; Forrester, J. S.; Jones, J. L.; Deng, J.; Yu, R.; Xing, X. J. Am. Chem. Soc. 2011, 133 (29), 11114. doi: 10.1021/ja2046292  doi: 10.1021/ja2046292

    8. [8]

      Azuma, M.; Chen, W. T.; Seki, H.; Czapski, M.; Olga, S.; Oka, K.; Mizumaki, M.; Watanuki, T.; Ishimatsu, N.; Kawamura, N.; Ishiwata, S.; Tucker, M. G.; Shimakawa, Y.; Attfield, J. P. Nat. Commun. 2011, 2, 347. doi: 10.1038/ncomms1361  doi: 10.1038/ncomms1361

    9. [9]

      Hu, L.; Chen, J.; Sanson, A.; Wu, H.; Rodriguez, C. G.; Olivi, L.; Ren, Y.; Fan, L.; Deng, J.; Xing, X. J. Am. Chem. Soc. 2016, 138 (27), 8320. doi: 10.1021/jacs.6b02370  doi: 10.1021/jacs.6b02370

    10. [10]

      Dejneka, M. J.; Chapman, C. L.; Misture, S. T. J. Am. Ceram. Soc. 2011, 94 (8), 2249. doi: 10.1111/j.1551-2916.2011.04730.x  doi: 10.1111/j.1551-2916.2011.04730.x

    11. [11]

      Uchino, K.; Nomura, S.; Cross, L. E.; Newnham, R. E.; Jang, S. J. J. Mater. Sci. 1981, 16 (3), 569. doi: 10.1007/BF02402772  doi: 10.1007/BF02402772

    12. [12]

      Atkinson, A.; Barnett, S.; Gorte, R. J.; Irvine, J. T. S.; McEvoy, A. J.; Mogensen, M.; Singhal, S. C.; Vohs, J. Nat. Mater. 2004, 3 (1), 17. doi: 10.1038/nmat1040  doi: 10.1038/nmat1040

    13. [13]

      Chen, J.; Hu, L.; Deng, J.; Xing, X. Chem. Soc. Rev. 2015, 44 (11), 3522. doi: 10.1039/C4CS00461B  doi: 10.1039/C4CS00461B

    14. [14]

      Adam, J. L. Chem. Rev. 2002, 102 (6), 2461. doi: 10.1021/cr010305b  doi: 10.1021/cr010305b

    15. [15]

      Greve, B. K.; Martin, K. L.; Lee, P. L.; Chupas, P. J.; Chapman, K. W.; Wilkinson, A. P. J. Am. Chem. Soc.2010, 132 (44), 15496. doi: 10.1021/ja106711v  doi: 10.1021/ja106711v

    16. [16]

      Hu, L.; Chen, J.; Fan, L.; Ren, Y.; Rong, Y.; Pan, Z.; Deng, J.; Yu, R.; Xing, X. J. Am. Chem. Soc. 2014, 136 (39), 13566. doi: 10.1021/ja5077487  doi: 10.1021/ja5077487

    17. [17]

      Hu, L.; Chen, J.; Fan, L.; Ren, Y.; Huang, Q.; Sanson, A.; Jiang, Z.; Zhou, M.; Rong, Y.; Wang, Y.; Deng, J.; Xing, X. Adv. Mater. 2015, 27 (31), 4592. doi: 10.1002/adma.201500868  doi: 10.1002/adma.201500868

    18. [18]

      Hancock, J. C.; Chapman, K. W.; Halder, G. J.; Morelock, C. R.; Kaplan, B. S.; Gallington, L. C.; Bongiorno, A.; Han, C.; Zhou, S.; Wilkinson, A. P. Chem. Mater. 2015, 27 (11), 3912. doi: 10.1021/acs.chemmater.5b00662  doi: 10.1021/acs.chemmater.5b00662

    19. [19]

      Hu, L.; Chen, J.; Xu, J.; Wang, N.; Han, F.; Ren, Y.; Pan, Z.; Rong, Y.; Huang, R.; Deng, J.; Li, L.; Xing, X. J. Am. Chem. Soc. 2016, 138 (44), 14530. doi: 10.1021/jacs.6b08746  doi: 10.1021/jacs.6b08746

    20. [20]

      Sleight, A. Nature 2003, 425 (6959), 674. doi: 10.1038/425674a  doi: 10.1038/425674a

    21. [21]

      Margadonna, S.; Prassides, K.; Fitch, A. N. J. Am. Chem. Soc. 2004, 126 (47), 15390. doi: 10.1021/ja044959o  doi: 10.1021/ja044959o

    22. [22]

      Song, X.; Sun, Z.; Huang, Q.; Rettenmayr, M.; Liu, X.; Seyring, M.; Li, G.; Rao, G.; Yin, F. Adv. Mater.2011, 23 (40), 4690. doi: 10.1002/adma.201102552  doi: 10.1002/adma.201102552

    23. [23]

      Phillips, A. E.; Halder, G. J.; Chapman, K. W.; Goodwin, A. L.; Kepert, C. J. J. Am. Chem. Soc. 2009, 132 (1), 10. doi: 10.1021/ja906895  doi: 10.1021/ja906895

  • 加载中
    1. [1]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    2. [2]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    3. [3]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    4. [4]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    5. [5]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    8. [8]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    9. [9]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    10. [10]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    11. [11]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    12. [12]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    13. [13]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    14. [14]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    15. [15]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    16. [16]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    17. [17]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    18. [18]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    19. [19]

      Zhiliang Li . An Overview of Research on the History of Catalysis Science in China. University Chemistry, 2024, 39(7): 398-404. doi: 10.3866/PKU.DXHX202310101

    20. [20]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

Metrics
  • PDF Downloads(7)
  • Abstract views(465)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return