Citation: YIN Fanhua, TAN Kai. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Physico-Chimica Sinica, ;2018, 34(3): 256-262. doi: 10.3866/PKU.WHXB201708071 shu

Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28

  • Corresponding author: TAN Kai, ktan@xmu.edu.cn
  • Received Date: 28 June 2017
    Revised Date: 31 July 2017
    Accepted Date: 4 August 2017
    Available Online: 7 March 2017

    Fund Project: the National Natural Science Foundation of China 21573182The project was supported by the National Natural Science Foundation of China (21573182)

  • A new isolated-pentagon-rule (IPR) C100(417)Cl28 has been captured, but its formation mechanism is still unclear. Herein we have used density functional theory (DFT) to study the possible reaction pathways, including Stone-Wales (SW) transformation, direct chlorination, and skeletal transformation for C100(417). The calculated results show that the major source of C100(417) is the skeletal transformation of C102(603), including chloride formation, C2 elimination, and SW transformation. The results satisfactorily explained the experimental observations, and provide useful guidance for the synthesis of fullerene chlorides.
  • 加载中
    1. [1]

      Xie, S. Y.; Gao, F.; Lu, X.; Huang, R. B.; Wang, C. R.; Zhang, X.; Liu, M. L.; Deng, S. L.; Zheng, L. S. Science 2004, 304, 699. doi:10.1126/science.1095567  doi: 10.1126/science.1095567

    2. [2]

      Tan, Y. Z.; Xie, S. Y.; Huang, R. B.; Zheng, L. S. Nat. Chem. 2009, 1, 450. doi:10.1038/nchem.329  doi: 10.1038/nchem.329

    3. [3]

      Wang, S.; Yang, S.; Kemnitz, E.; Troyanov, S. I. Inorg. Chem. 2016, 55, 5741. doi:10.1021/acs.inorgchem.6b00809  doi: 10.1021/acs.inorgchem.6b00809

    4. [4]

      Troyanov, S. I.; Yang, S.; Chen, C.; Kemnitz, E. Chem. Eur. J. 2011, 17, 10662. doi:10.1002/chem.201100908  doi: 10.1002/chem.201100908

    5. [5]

      Yang, S.; Wei, T.; Kemnitz, E.; Troyanov, S. I. Angew. Chem. Int. Ed. 2012, 124, 8364. doi:10.1002/anie.201201775  doi: 10.1002/anie.201201775

    6. [6]

      Stone, A.; Wales, D. Chem. Phys. Lett. 1986, 128, 501. doi:10.1016/0009-2614(86)80661-3  doi: 10.1016/0009-2614(86)80661-3

    7. [7]

      Ioffe, I. N.; Mazaleva, O. N.; Chen, C.; Yang, S.; Kemnitz, E.; Troyanov, S. I. Dalton. Trans.2011, 40, 11005. doi:10.1039/C1DT10256G  doi: 10.1039/C1DT10256G

    8. [8]

      Ioffe, I. N.; Goryunkov, A. A.; Tamm, N. B.; Sidorov, L. N.; Kemnitz, E.; Troyanov, S. I. Angew. Chem. Int. Ed. 2009, 48, 5904. doi:10.1002/anie.200902253  doi: 10.1002/anie.200902253

    9. [9]

      Ioffe, I. N.; Mazaleva, O. N.; Sidorov, L. N.; Yang, S.; Wei, T.; Kemnitz, E.; Troyanov, S. I. Inorg. Chem. 2012, 51, 11226. doi:10.1021/ic301650j  doi: 10.1021/ic301650j

    10. [10]

      Yang, S.; Wei, T.; Wang, S.; Ignat'eva, D. V.; Kemnitz, E.; Troyanov, S. I. Chem. Commun. 2013, 49, 7944. doi:10.1039/C3CC44386H  doi: 10.1039/C3CC44386H

    11. [11]

      Ioffe, I. N.; Mazaleva, O. N.; Sidorov, L. N.; Yang, S.; Wei, T.; Kemnitz, E.; Troyanov, S. I. Inorg. Chem. 2013, 52, 13821. doi:10.1021/ic402556g  doi: 10.1021/ic402556g

    12. [12]

      Wang, S.; Yang, S.; Kemnitz, E.; Troyanov, S. I. Angew. Chem. Int. Ed. 2016, 55, 3235. doi:10.1002/ange.201511928  doi: 10.1002/ange.201511928

    13. [13]

      Zhao, X.; Goto, H.; Slanina, Z. Chem. Phys. 2004, 306, 93. doi:10.1016/j.chemphys.2004.07.019  doi: 10.1016/j.chemphys.2004.07.019

    14. [14]

      Cai, W.; Xu, L.; Shao, N.; Shao, X.; Guo, Q. J. Chem. Phys. 2005, 122, 184318. doi:10.1063/1.1891706  doi: 10.1063/1.1891706

    15. [15]

      Hao, Y.; Tang, Q.; Li, X.; Zhang, M.; Wan, Y.; Feng, L.; Chen, N.; Slanina, Z. K.; Adamowicz, L.; Uhlík, F. Inorg. Chem. 2016, 55, 11354. doi:10.1021/acs.inorgchem.6b01894  doi: 10.1021/acs.inorgchem.6b01894

    16. [16]

      Chen, C. H.; Abella, L.; Cerón, M. R.; Guerrero-Ayala, M. A.; Rodríguez-Fortea, A.; Olmstead, M. M.; Powers, X. B.; Balch, A. L.; Poblet, J. M.; Echegoyen, L. J. Am. Chem. Soc.2016, 138, 13030. doi:10.1021/jacs.6b07912  doi: 10.1021/jacs.6b07912

    17. [17]

      Cai, W.; Li, F. F.; Bao, L.; Xie, Y.; Lu, X. J. Am. Chem. Soc. 2016, 138, 6670. doi:10.1021/jacs.6b03934  doi: 10.1021/jacs.6b03934

    18. [18]

      Yang, S.; Wang, S.; Kemnitz, E.; Troyanov, S. I. Angew. Chem. Int. Ed. 2014, 53, 2460. doi:10.1002/anie.201310099  doi: 10.1002/anie.201310099

    19. [19]

      Yang, S.; Wei, T.; Scheurell, K.; Kemnitz, E.; Troyanov, S. I. Chem. Eur. J. 2015, 21, 15138. doi:10.1002/chem.201501549  doi: 10.1002/chem.201501549

    20. [20]

      Jin, F.; Yang, S.; Kemnitz, E.; Trojanov, S. I. J. Am. Chem. Soc. 2017, 139, 4651. doi:10.1021/jacs.7b01490  doi: 10.1021/jacs.7b01490

    21. [21]

      Fowler, P. DE Manolopoulos An atlas of Fullerenes; Oxford University Press: Oxford, UK, 1995.

    22. [22]

      Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi:10.1063/1.464913  doi: 10.1063/1.464913

    23. [23]

      Gonzalez, C.; Schlegel H. B. J. Chem. Phys. 1989, 90, 2154. doi:10.1063/1.49785  doi: 10.1063/1.49785

    24. [24]

      Frisch, M.; Trucks, G.; Schlegel, H.; et al. Gaussian 09, Revision A. 1.; Gaussian, Inc: Wallingford, CT, 2009.

    25. [25]

      Yoshida, M.; Gotō, H.; Hirose, Y.; Zhao, X.; Ōsawa, E. J. Theo. Chem. 1996, 1, 163. doi:10.1002/ejtc.26  doi: 10.1002/ejtc.26

    26. [26]

      Shao, N.; Gao, Y.; Yoo, S.; An, W.; Zeng, X. C. J. Phys. Chem. C 2006, 110, 7672. doi:10.1021/jp0624092  doi: 10.1021/jp0624092

    27. [27]

      Slanina, Z.; Lee, S. L.; Uhlík, F.; Adamowicz, L.; Nagase, S. Theor. Chem. Acc. 2007, 117, 315. doi:10.1007/s00214-006-0150-0  doi: 10.1007/s00214-006-0150-0

    28. [28]

      Bettinger, H. F.; Yakobson, B. I.; Scuseria, G. E. J. Am. Chem. Soc. 2003, 125, 5572. doi:10.1021/ja0288744  doi: 10.1021/ja0288744

  • 加载中
    1. [1]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    8. [8]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    9. [9]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    10. [10]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    11. [11]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    12. [12]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    13. [13]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    14. [14]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    15. [15]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    16. [16]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    17. [17]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    18. [18]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    19. [19]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    20. [20]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

Metrics
  • PDF Downloads(7)
  • Abstract views(415)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return