Citation: YIN Yueqi, JIANG Mengxu, LIU Chunguang. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Physico-Chimica Sinica, ;2018, 34(3): 270-277. doi: 10.3866/PKU.WHXB201707071 shu

DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules

  • Corresponding author: LIU Chunguang, liucg407@163.com
  • Received Date: 22 May 2017
    Revised Date: 30 June 2017
    Accepted Date: 30 June 2017
    Available Online: 7 March 2017

    Fund Project: The project was supported by the Natural Science Foundation of China (21373043)the Natural Science Foundation of China 21373043

  • Molecular geometries, electronic structure, and infrared spectroscopy of a series of polyoxometalate (POM)-supported single atom catalyst (SACs) (M1/POM (M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) have been studied based on density factional theory (DFT) combined with natural bond orbital (NBO) analysis method. The results show that Pt1/POM has a higher reactivity for activation of N2 relevant to the others. The interaction between the isolated Pt atom and N2 arises from an orbital mixture, which is formed by the dxz and dyz orbital of Pt atom and the π* anti-bond orbit of N2 molecule. The electron transfer from Pt atom to the nitrogen molecule leads to a weakened N≡N bond. The N≡N bond distance increases when compared with the free N2 molecule. All results indicate an effective activation of the nitrogen molecules. For DFT-derived IR spectra, the four characteristic peaks of Keggin-type POM split into five because of introduction of the isolated metal atom.
  • 加载中
    1. [1]

      Burris, R. H. J. Biol. Chem. 1991, 266, 9339.
       

    2. [2]

      Shah, V. K.; Brill, W. J. Proc. Natl. Acad. Sci. U. S. A. 1977, 74, 3249. doi: 10.1073/pnas.0507853103  doi: 10.1073/pnas.0507853103

    3. [3]

      Chakrabarti, P.; Woo, D.; Kornuc, J. J.; Rees, D. C. Science 1992, 257, 1653. doi: 10.1126/science.1529353  doi: 10.1126/science.1529353

    4. [4]

      Kirn, J.; Rees, D. C. Nature 1992, 360, 553. doi: 10.1038/360553a0  doi: 10.1038/360553a0

    5. [5]

      Kirn, J.; Rees, D. C. Science 1992, 257, 1677. doi: 10.1126/science.1529354  doi: 10.1126/science.1529354

    6. [6]

      Chan, M. K.; Kirn, J.; Rees, D. C. Science1993, 260, 792. doi: 10.1126/science.8484118  doi: 10.1126/science.8484118

    7. [7]

      Kirn, J.; Woo, D.; Rees, D. C. Biochemistry1993, 32, 7104. doi: 10.1021/bi00079a006  doi: 10.1021/bi00079a006

    8. [8]

      Kirn, J.; Rees, D. C. Biochemistry 1994, 33, 389. doi: 10.1021/bi00168a001  doi: 10.1021/bi00168a001

    9. [9]

      Jia, H. P.; Quadrelli, E. A. Chem. Soc. Rev. 2014, 43, 547. doi: 10.1039/c3cs60206k  doi: 10.1039/c3cs60206k

    10. [10]

      MacKay, B. A.; Fryzuk, M. D. Chem. Rev. 2004, 104, 385. doi: 10.1021/cr020610c  doi: 10.1021/cr020610c

    11. [11]

      Yandulov, D. V.; Schrock, R. R. Science 2003, 301, 76. doi: 10.1126/science.1085326  doi: 10.1126/science.1085326

    12. [12]

      Arashiba, K.; Miyake, Y.; Nishibayashi, Y. Nat. Chem. 2011, 3, 120. doi: 10.1038/nchem.906  doi: 10.1038/nchem.906

    13. [13]

      Anderson, J. S.; Rittle, J.; Peters, J. C. Nature 2013, 501, 84. doi: 10.1038/nature12435  doi: 10.1038/nature12435

    14. [14]

      Allen, A. D.; Harris, R. O.; Loescher, B. R.; Stevens, J. R.; Whiteley, R. N. Chem. Rev. 1973, 73, 11. doi: 10.1021/cr60281a002  doi: 10.1021/cr60281a002

    15. [15]

      Hoffman, B. M.; Lukoyanov, D.; Yang, Z. Y.; Dean, D. R.; Seefeldt, L. C. Chem. Rev. 2014, 114, 4041. doi: 10.1021/cr400641x  doi: 10.1021/cr400641x

    16. [16]

      Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Nat. Chem. 2011, 3, 634. doi: 10.1038/nchem.1095  doi: 10.1038/nchem.1095

    17. [17]

      Yang, X. F.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T. Acc. Chem. Res. 2013, 46, 1740. doi: 10.1021/ar300361m.Epub 2013 Jul1  doi: 10.1021/ar300361m.Epub2013Jul1

    18. [18]

      Thomas, J. M. Nature2015, 525, 325. doi: 10.1038/525325a  doi: 10.1038/525325a

    19. [19]

      Liu, J. ACS Catal.2017, 7, 34. doi: 10.1021/acscatal.6b01534  doi: 10.1021/acscatal.6b01534

    20. [20]

      Wei, H.; Liu, X. Y.; Wang, A.; Zhang, L.; Qiao, B. T.; Yang, Y. F.; Huang, Y. Q.; Miao, S.; Liu, J.; Zhang, T. Nat. Commun. 2013, 5, 5634. doi: 10.1038/ ncomms6634  doi: 10.1038/ncomms6634

    21. [21]

      Liu, P.; Zhao, Y.; Qin, R.; Mo, S.; Chen, G.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D.; Wu, B.; Fu, G.; Zheng, N. Science 2016, 352, 797. doi: 10.1126/science.aaf5251  doi: 10.1126/science.aaf5251

    22. [22]

      Katsoulis, D. E. Chem. Rev. 1998, 98, 359. doi: 10.1021/cr960398a  doi: 10.1021/cr960398a

    23. [23]

      Dolbecq, A.; Dumas, E.; Mayer, C. R.; Mialane, P. Chem. Rev. 2010, 110, 6009. doi: 10.1021/cr1000578  doi: 10.1021/cr1000578

    24. [24]

      Hill, C. L. Chem. Rev.1998, 98, 1. doi: 10.1021/cr960395y  doi: 10.1021/cr960395y

    25. [25]

      Izarova, N. V.; Pope, M. T.; Kortz, U. Angew. Chem., Int. Ed. 2012, 51, 2. doi: 10.1038/srep25154  doi: 10.1038/srep25154

    26. [26]

      Dablemont, C.; Hamaker, C. G.; Thouvenot, R.; Sojka, Z.; Che, M.; Maatta, E. A.; Proust, A. Chem. -Eur J. 2006, 12, 9150. doi: 10.1002/chem.200600934  doi: 10.1002/chem.200600934

    27. [27]

      Besson, C.; Musaev, D. G.; Lahootun, V.; Cao, R.; Chamoreau, L. M.; Villanneau, R.; Villain, F.; Thouvenot, R.; Geletii, Y. V.; Hill, C. L.; Proust, A. Chem. Eur. J. 2009, 15, 10233. doi: 10.1002/chem.200900965  doi: 10.1002/chem.200900965

    28. [28]

      Lahootun, V.; Besson, C.; Villanneau, R.; Villain, F.; Chamoreau, L. M.; Boubekeur, K.; Blanchard, S.; Thouvenot, R.; Proust, A. J. Am. Chem. Soc. 2007, 129, 7127. doi: 0.1021/ja071137t

    29. [29]

      Sokolov, M. N.; Adonin, S. A.; Mainichev, D. A.; Sinkevich, P. L.; Vicent, C.; Kompankov, N. B.; Gushchin, A. L.; Nadolinny, V. A.; Fedin, V. P. Inorg. Chem. 2013, 52, 9675. doi: 10.1021/ic401492q  doi: 10.1021/ic401492q

    30. [30]

      Liu, C. G.; Liu, S.; Zheng, T. Inorg. Chem. 2015, 54, 7929. doi: 10.1021/acs.inorgchem.5b01002  doi: 10.1021/acs.inorgchem.5b01002

    31. [31]

      Coperet, C.; Comas-Vives, A.; Conley, M. P.; Estes, D. P.; Fedorov, A.; Mougel, V.; Nagae, H.; Nunez-Zarur, F.; Zhizhko, P. A. Chem. Rev. 2016, 116, 323. doi: 10.1002/chin.201615211  doi: 10.1002/chin.201615211

    32. [32]

      Zhang, B.; Asakura, H.; Zhang, J.; Zhang, J.; De, S.; Yan, N. Angew. Chem. Int. Ed. 2016, 55, 8319–8323. doi: 10.1002/anie.201602802  doi: 10.1002/anie.201602802

    33. [33]

      Zhang, B.; Asakura, H.; Yan, N. Ind. Eng. Chem. Res. 2017, 56, 3578. doi: 10.1021/acs.iecr.7b00376  doi: 10.1021/acs.iecr.7b00376

    34. [34]

      Zhao, Y.; Truhlar, D. G.J. Chem. Phys. 2006, 125, 194101. doi: 10.1063/1.2370993  doi: 10.1063/1.2370993

    35. [35]

      Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270. doi: 10.1063/1.448799  doi: 10.1063/1.448799

    36. [36]

      Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299. doi: 10.1063/1.448975  doi: 10.1063/1.448975

    37. [37]

      Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999. doi: 10.1021/cr9904009  doi: 10.1021/cr9904009

    38. [38]

      Glendening, A. E.; Carpenter, J. E.; Weinhold, F. NBO Version 3.1.

    39. [39]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.

    40. [40]

      Zhang, B.; Asakura, H.; Zhang, J.; Zhang, I.; De, S.; Yan, N. Angew. Chem. Int. Ed. 2016, 55, 1. doi: 10.1002/anie.201602801  doi: 10.1002/anie.201602801

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    3. [3]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    7. [7]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    8. [8]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    9. [9]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    10. [10]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    11. [11]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    12. [12]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    13. [13]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    14. [14]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    17. [17]

      Zhihao HEJiafu DINGYunjie WANGXin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390

    18. [18]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    19. [19]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    20. [20]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

Metrics
  • PDF Downloads(22)
  • Abstract views(508)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return