Citation:
YANG Zu-Guang, ZHANG Jun, CHEN Jiu-Hua, HE Feng-Rong, ZHONG Ben-He, GUO Xiao-Dong. Enhanced Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials at Elevated Temperature by Zr Doping[J]. Acta Physico-Chimica Sinica,
;2016, 32(5): 1056-1061.
doi:
10.3866/PKU.WHXB201603092
-
In order to ameliorate the severe capacity fading of LiNi0.5Co0.2Mn0.3O2 cathode materials at elevated temperatures, a Zr-doping strategy was performed via a solid-state method, and the influence of the doping content on the structural and electrochemical properties of LiNi0.5Co0.2Mn0.3O2 was studied. The results indicate that the Li+/Ni2+ cation mixing can be reduced and the electrochemical performance, especially the hightemperature cycling performance, can be improved when the doping content of zirconium is 0.01. After 95 cycles, the capacity retention of Li(Ni0.5Co0.2Mn0.3)0.99Zr0.01O2 is 92.13% at 1C between 3.0 and 4.3 V, which is higher than that of the LiNi0.5Co0.2Mn0.3O2 (87.61%). When cycling at 55 ℃, Li(Ni0.5Co0.2Mn0.3)0.99Zr0.01O2 exhibits a capacity retention of 82.96% after 115 cycles at 1C, while that of the bare sample remains at only 67.63%. Therefore, a small amount of zirconium doping is notably beneficial to the electrochemical performance of LiNi0.5Co0.2Mn0.3O2 at elevated temperatures.
-
-
-
[1]
(1) Thackeray, M. M.; Wolverton, C.; Isaacs, E. D. Energy Environ. Sci. 2012, 5, 7854. doi: 10.1039/c2ee21892e
-
[2]
(2) Tarascon, J. M.; Armand, M. Nature 2001, 414, 359. doi: 10.1038/35104644
-
[3]
(3) Stanley, M.; Whittingham. Chem. Rev. 2004, 104, 4271. doi: 10.1021/cr020731c
-
[4]
(4) Wu, K. C.; Wang, F.; Gao, L. L.; Li, R. M.; Xiao, L. L.; Zhao, L. T.; Hu, J. S.; Wang, X. J.; Xu, Z. L.; Wu, Q. G. Electrochim. Acta 2012, 75, 393. doi: 10.1016/j.electacta.2012.05.035
-
[5]
(5) Yang, S. Y.; Wang, X. Y.; Yang, K. X.; Bai, Y. S.; Liu, Z. L.; Shu, H. B.; Wei, Q. L. Electrochim. Acta 2012, 66, 88. doi: 10.1016/j.electacta.2012.01.061
-
[6]
(6) Noh, M.; Cho, J. J. Electrochem. Soc. 2013, 160, A105. doi: 10.1149/2.004302jes
-
[7]
(7) Liu, W.; Oh, P.; Liu, X.; Lee, M. J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J. Angew. Chem. Int. Edit. 2015, 54, 4440. doi: 10.1002/anie.201409262
-
[8]
(8) Arorat, P.; White, R. E.; Doyle, M. J. Electrochem. Soc. 1998, 145, 3647. doi: 10.1149/1.1838857
-
[9]
(9) Aurbach, D. J. Power Sources 2003, 119, 497. doi: 10.1016/S0378-7753(03)00273-8
-
[10]
(10) Wu, Z. Z.; Han, X. G.; Zheng, J. X.; Wei, Y.; Qiao, R.; Shen, F.; Dai, J. Q.; Hu, L. B.; Xu, K.; Lin, Y.; Yang, W. L.; Pan, F. Nano Lett. 2014, 14, 4700. doi: 10.1021/nl5018139
-
[11]
(11) Hua, W. B.; Zhang, J. B.; Zheng, Z.; Liu, W. Y.; Peng, X.H.; Guo, X. D.; Zhong, B. H.; Wang, Y. J.; Wang, X. L. Dalton Trans. 2014, 43, 14824. doi: 10.1039/C4DT01611D
-
[12]
(12) Aurbach, D.; Lavi, O. S.; Ghanty C.; Dixit, M.; Haik, O.; Talianker, M.; Grinblat, Y.; Leifer, N.; Lavi, R. J. Electrochem. Soc. 2015, 162, A1014. doi: 10.1149/2.0681506jes
-
[13]
(13) Zhang, Y.; Wang, Z. B.; Lei, J.; Li, F. F.; Wu, J.; Zhang, X. G. Ceramics International 2015, 41, 9069. doi: 10.1016/j.ceramint.2015.03.280
-
[14]
(14) Zhu, H. L.; Xie, T.; Chen, Z.Y.; Li, L. J.; Xu, M.; Wang, W. H. Electrochim. Acta 2014, 135, 77. doi: 10.1016/j.electacta.2014.04.183
-
[15]
(15) Wang, D.; Li, X. H.; Wang, Z. X.; Guo, H. J.; Xu, Y.; Fan, Y. L.; Ru, J. J. Electrochim. Acta 2016, 188, 48. doi: 10.1016/j.electacta.2015.11.093
-
[16]
(16) Xia, L.; Qiu, K. H.; Gao, Y. Y.; He, X.; Zhou, F. D. J. Mater. Sci. 2015, 50, 2914. doi: 10.1007/s10853-015-8856-9
-
[17]
(17) Kim, S. H.; Kim, C. S. J. Electroceram. 2009, 23, 254. doi: 10.1007/s10832-008-9414-5
-
[18]
(18) Ding, C. X.; Bai, Y. C.; Feng, X. Y.; Chen, C. H. Solid State Ionics 2011, 189, 69. doi: 10.1016/j.ssi.2011.02.015
-
[19]
(19) Lin, B.; Wen, Z.Y.; Gu, Z. H.; Xu, X. X. J. Power Sources 2007, 174, 544. doi: 10.1016/j.jpowsour.2007.06.125
-
[20]
(20) He, Z. J.; Wang, Z. X.; Chen, H.; Huang, Z. M.; Li, X. H.; Guo, H. J.; Wang, R. H. J. Power Sources 2015, 299, 334. doi: 10.1016/j.jpowsour.2015.09.025
-
[21]
(21) Hua, W. B.; Zheng, Z.; Li, L.Y.; Guo, X. D.; Liu, H.; Shen, C. H.; Wu, Z. G.; Zhong, B. H.; Huang, L. Acta Phys. -Chim. Sin. 2014, 30, 1481. [滑纬博, 郑卓, 李龙燕, 郭孝东, 刘恒, 沈重亨, 吴振国, 钟本和, 黄令. 物理化学学报, 2014, 30, 1481.] doi: 10.3866/PKU.WHXB201405303
-
[22]
(22) Li, J. B.; Xu, Y. L.; Du, X. F.; Sun, X. F.; Xiong, L. L. Acta Phys. -Chim. Sin. 2012, 28, 1899. [李节宾, 徐友龙, 杜显锋, 孙孝飞, 熊礼龙. 物理化学学报, 2012, 28, 1899.] doi: 10.3866/PKU.WHXB201205152
-
[23]
(23) Zhang, X. Y.; Jiang, W. J.; Mauger, A.; Gendron, F.; Julien, C. M. J. Power Sources 2010, 195, 1292. doi: 10.1016/j.jpowsour.2009.09.029
-
[24]
(24) Wu, Y. P.; Rahm, E.; Holze, R. Electrochim. Acta 2002, 47, 3491. doi: 10.1016/S0013-4686(02)00317-1
-
[25]
(25) Cho, Y. H.; Oh, P.; Cho, J. Nano Lett. 2013, 13, 1145. doi: 10.1021/nl304558t
-
[26]
(26) Wang, M.; Chen, Y. B.; Wu, F.; Su, Y. F.; Chen, L. Sci. China Tech. Sci. 2010, 53, 3214. doi: 10.1007/s11431-010-4155-5
-
[1]
-
-
-
[1]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[2]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[3]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[4]
Pengyang FAN , Shan FAN , Qinjin DAI , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Xiaoxiao HUANG , Yong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339
-
[5]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
-
[6]
Lingbang Qiu , Jiangmin Jiang , Libo Wang , Lang Bai , Fei Zhou , Gaoyu Zhou , Quanchao Zhuang , Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040
-
[7]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[8]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[9]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[10]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
-
[11]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[12]
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
-
[13]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[14]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
-
[15]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[16]
Hengyi ZHU , Liyun JU , Haoyue ZHANG , Jiaxin DU , Yutong XIE , Li SONG , Yachao JIN , Mingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358
-
[17]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
-
[18]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[19]
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042
-
[20]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[1]
Metrics
- PDF Downloads(9)
- Abstract views(777)
- HTML views(50)