Citation:
LIU Xiang, WANG Jin-Tao, ZHANG Yue, LI Zhan-Hong, XU Chang-Hong, TONG Li. Fluorescence In situ Observation of the Interfacial Dynamics and Adhesion Behaviors of Water and Oil Droplets in a Confined Geometry[J]. Acta Physico-Chimica Sinica,
;2016, 32(5): 1257-1266.
doi:
10.3866/PKU.WHXB201603072
-
As a main source of lubricant contamination, water is one of the most important causes of failure and life reduction of lubricants and mechanical systems. To simulate the interfacial behaviors of real heterogeneous systems, a high-precision point contact experiment apparatus was constructed to study the classical immiscible displacement problem. The interfacial behaviors between water and oil, which are always carried out in the static and parallel space, have been extended to the dynamic point contact wedge in a confined space. The interfacial behaviors of water droplets invading the oil pool around the dynamic point contact region were investigated. Emphasis is placed on the influences of the wettability and the relative separation motion of the solid surfaces on the dynamic behaviors of the droplets. The spreading coefficient has been determined to be the key parameter influencing the coalescing and separating behaviors of the two-phase interface. The influence of the wettability of the solid surface and the relative separation between the ball and the disc on the final coalescing form has been determined. Surface tension and adhesion energy are used to interpret these observations.
-
-
-
[1]
(1) Saffman, P. G.; Taylor, G. Roy. Soc. A-Math Phys. 1958, 245, 312. doi: 10.1098/rspa.1958.0085
-
[2]
(2) Bensimon, D.; Kadanoff, L. P.; Liang, S. D.; Shraiman, B. I.; Tang, C. Rev. Mod. Phys. 1986, 58, 977. doi: 10.1103/RevModPhys.58.977
-
[3]
(3) Kang, Q.; Zhang, D.; Chen, S. Adv Water Resour 2004, 27, 13. doi: 10.1016/j.advwatres.2003.10.002
-
[4]
(4) Aguilar, R. L.; Machado, A. H.; Pagonabarraga, I. Phys. Fluids 2007, 19, 102112. doi: 10.1063/1.2801511
-
[5]
(5) Aguilar, R. L.; Pagonabarraga, I.; Machado, A. H. Phys. Fluids 2007, 19, 102113. doi: 10.1063/1.2801513
-
[6]
(6) Al-Housseiny, T. T.; Tsai, P. A.; Stone, H. A. Nat. Phys. 2012, 8, 747. doi: 10.1038/nphys2396
-
[7]
(7) Jha, B.; Cueto-Felgueroso, L.; Juanes, R. Phys. Rev. Lett. 2011, 106, 194502. doi: 10.1103/PhysRevLett.106.194502
-
[8]
(8) Freitas, J. F.; Soares, E. J.; Thompson, R. L. Rheol. Acta 2011, 50, 403. doi: 10.1007/s00397-011-0544-3
-
[9]
(9) Kotzalas, M. N.; Doll, G. L. Phil. Trans. R. Soc. A 2010, 368, 4829. doi: 10.1098/rsta.2010.0194
-
[10]
(10) Needelman, W. M.; Barris, M. A.; LaVallee, G. L. Power Eng. 2009, 113, 112.
-
[11]
(11) Hoang, A.; Kavehpour, H. P. Phys. Rev. Lett. 2011, 106, 254501. doi: 10.1103/PhysRevLett.106.254501
-
[12]
(12) Huang, L.; Guo, D.; Wen, S. Z.; Wan, G. T. Y. Tribol. Lett. 2014, 54, 263. doi: 10.1007/s11249-014-0301-8
-
[13]
(13) Ebert, D.; Bhushan, B. Langmuir 2012, 28, 11391. doi: 10.1021/la301479c
-
[14]
(14) Borcia, R.; Bestehorn, M. Phys. Rev. E 2010, 82, 036312. doi: 10.1103/PhysRevE.82.036312
-
[15]
(15) Torza, S.; Mason, S. G. Science 1969, 163, 813. doi: 10.1126/science.163.3869.813
-
[16]
(16) Nisisako, T.; Hatsuzawa, T. Microfluid Nanofluid. 2010, 9, 427. doi: 10.1007/s10404-009-0559-6
-
[17]
(17) Karpitschka, S.; Riegler, H. Langmuir 2010, 26, 11823. doi: 10.1021/la1007457
-
[18]
(18) Guzowski, J.; Korczyk, P. M.; Jakiela, S. Soft Matter 2012, 8, 7269. doi: 10.1039/c2sm25838b
-
[19]
(19) Deng, N. N.; Wang, W.; Ju, X. J. Lab Chip. 2013, 13, 4047. doi: 10.1039/C3LC50638J
-
[20]
(20) Guzowski, J.; Garstecki, P. Lab. Chip. 2014, 14, 1477. doi: 10.1039/C3LC51229K
-
[21]
(21) Liu, T. Q.; Sun, W.; Sun, X. Y.; Ai, H. R. Acta Phys. -Chim. Sin. 2010, 26, 2989. [刘天庆, 孙玮, 孙相彧, 艾宏儒. 物理化学学报, 2010, 26, 2989.] doi: 10.3866/PKU.WHXB20101025
-
[22]
(22) Huang, J.Y.; Wang, F. H.; Zhao, X.; Zhang, K.Acta Phys. -Chim. Sin. 2013, 29, 2459. [黄建业, 王峰会, 赵翔, 张凯. 物理化学学报, 2013, 29, 2459.] doi: 10.3866/PKU.WHXB201310081
-
[23]
(23) Zhou, M.; Zheng, A. R.; Yang, J. H. Acta Phys. -Chim. Sin. 2007, 23, 1296. [周明, 郑傲然, 杨加宏. 物理化学学报, 2007, 23, 1296.] doi: 10.3866/PKU.WHXB20070831
-
[24]
(24) Bormashenko, E. Colloid Polym. Sci. 2013, 291, 339. doi: 10.1007/s00396-012-2778-8
-
[25]
(25) Luo, C.; Heng, X. Langmuir 2014, 30, 10002. doi: 10.1021/la501804h
-
[1]
-
-
-
[1]
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
-
[2]
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036
-
[3]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[4]
Jiandong Liu , Xin Li , Daxiong Wu , Huaping Wang , Junda Huang , Jianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039
-
[5]
Zhuo Han , Danfeng Zhang , Haixian Wang , Guorui Zheng , Ming Liu , Yanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034
-
[6]
Yutong Dong , Huiling Xu , Yucheng Zhao , Zexin Zhang , Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022
-
[7]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019
-
[8]
Yajie Li , Bin Chen , Yiping Wang , Hui Xing , Wei Zhao , Geng Zhang , Siqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053
-
[9]
Yu Peng , Jiawei Chen , Yue Yin , Yongjie Cao , Mochou Liao , Congxiao Wang , Xiaoli Dong , Yongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087
-
[10]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007
-
[11]
Yujing Chen , Hongqun Ouyang , Dan Zhao , Yanyan Chu , Zhengping Qiao . Recommendations for the Content and Instruction of the Physical Chemistry Experiment “Construction of Ternary Liquid-Liquid Phase Diagrams”. University Chemistry, 2025, 40(7): 359-366. doi: 10.12461/PKU.DXHX202409120
-
[12]
Da Wang , Xiaobin Yin , Jianfang Wu , Yaqiao Luo , Siqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029
-
[13]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[14]
Hao Chen , Dongyue Yang , Gang Huang , Xinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059
-
[15]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[16]
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
-
[17]
Rui Yang , Hui Li , Qingfei Meng , Wenjie Li , Jiliang Wu , Yongjin Fang , Chi Huang , Yuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053
-
[18]
Chang Guo , Haipeng Yang , Hui Fang , Yingguo Zhao , Yating Li . 基于深度学习的物理化学课程DOK教学实践初探——以弯曲液面附加压力和蒸气压教学为例. University Chemistry, 2025, 40(6): 28-36. doi: 10.12461/PKU.DXHX202408049
-
[19]
Xiting Zhou , Zhipeng Han , Xinlei Zhang , Shixuan Zhu , Cheng Che , Liang Xu , Zhenyu Sun , Leiduan Hao , Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070
-
[20]
Qianli Ma , Tianbing Song , Tianle He , Xirong Zhang , Huanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(741)
- HTML views(37)