Citation: ZUO Hui-Wen, LU Chun-Hai, REN Yu-Rong, LI Yi, ZHANG Yong-Fan, CHEN Wen-Kai. Pt4 Clusters Supported on Monolayer Graphitic Carbon Nitride Sheets for Oxygen Adsorption: A First-Principles Study[J]. Acta Physico-Chimica Sinica, ;2016, 32(5): 1183-1190. doi: 10.3866/PKU.WHXB201603032 shu

Pt4 Clusters Supported on Monolayer Graphitic Carbon Nitride Sheets for Oxygen Adsorption: A First-Principles Study

  • Corresponding author: CHEN Wen-Kai, 
  • Received Date: 30 November 2015
    Available Online: 1 March 2016

    Fund Project: 国家自然科学基金(21203227,51574090)资助项目 (21203227,51574090)

  • The structural and electronic properties of Pt4 nanoparticles adsorbed on monolayer graphitic carbon nitride (Pt4/g-C3N4), as well as the adsorption behavior of oxygen molecules on the Pt4/g-C3N4 surface have been investigated through first-principles density-functional theory (DFT) calculations with the generalized gradient approximation (GGA). The interaction of the oxygen molecules with the bare g-C3N4 and the Pt4 clusters was also calculated for comparison. Our calculations show that Pt nanoparticles prefer to bond with four edge N atoms on heptazine phase g-C3N4 (HGCN) surfaces, forming two hexagonal rings. For s-triazine phase g-C3N4 (TGCN) surfaces, Pt nanoparticles prefer to sit atop the single vacancy site, forming three bonds with the nearest nitrogen atoms. Stronger hybridization of the Pt nanoparticles with the sp2 dangling bonds of neighboring nitrogen atoms leads to the Pt4 clusters strongly binding on both types of g-C3N4 surface. In addition, the results from Mulliken charge population analyses suggest that there are electrons flowing from the Pt clusters to g-C3N4. According to the comparative analyses of the O2 adsorbed on the Pt4/HGCN, Pt4/TGCN, and pure g-C3N4 systems, the presence of metal clusters promotes greater electron transfer to oxygen molecules and elongates the O―O bond. Meanwhile, its greater adsorbate-substrate distortion and large adsorption energy render the Pt4/HGCN system slightly superior to the Pt4/TGCN system in catalytic performance. The results validate that being supported on g-C3N4 may be a good way to modify the electronic structure of materials and their surface properties improve their catalytic performance.
  • 加载中
    1. [1]

      (1) Seger, B.; Kamat, P. V. J. Phys. Chem. C 2009, 113 (19), 7990. doi: 10.1021/jp900360k

    2. [2]

      (2) Wu, S. Y.; Ho, J. J. J. Phys. Chem. C 2014, 118 (46), 26764. doi: 10.1021/jp507453h

    3. [3]

      (3) Song, E. H.; Wen, Z.; Jiang, Q. J. Phys. Chem. C 2011, 115 (9), 3678. doi: 10.1021/jp108978c

    4. [4]

      (4) Lu, Y. H.; Zhou, M.; Zhang, C.; Feng, Y. P. J. Phys. Chem. C 2009, 113 (47), 20156. doi: 10.1021/jp908829m

    5. [5]

      (5) Zhou, M.; Zhang, A. H.; Dai, Z. X.; Zhang, C.; Feng, Y. P. J. Chem. Phys. 2010, 132 (19), 194704. doi: 10.1063/1.3427246

    6. [6]

      (6) Li, Y. F.; Zhou, Z.; Yu, G. T.; Chen, W.; Chen, Z. F. J. Phys. Chem. C 2010, 114 (14), 6250. doi: 10.1021/jp911535v

    7. [7]

      (7) Lim, D. H.; Negreira, A. S.; Wilcox, J. J. Phys. Chem. C 2011, 115 (18), 8961. doi: 10.1021/jp2012914

    8. [8]

      (8) Xu, J.; Wang, Y. J.; Zhu, Y. F. Langmuir 2013, 29 (33), 10566. doi: 10.1021/la402268u

    9. [9]

      (9) Wang, X. C.; Maeda, K.; Chen, X. F.; Takanabe, K.; Domen, K.; Hou, Y. D.; Fu, X. Z.; Antonietti, M. J. Am. Chem. Soc. 2009, 131 (5), 1680. doi: 10.1021/ja809307s

    10. [10]

      (10) Zhu, J. J.; Xiao, P.; Li, H. L.; Carabineiro, S. A. C. ACS Appl. Mater. Interfaces 2014, 6 (19), 16449. doi: 10.1021/am502925j

    11. [11]

      (11) Wang, X. C.; Blechert, S.; Antonietti, M. ACS Catal. 2012, 2 (8), 1596. doi: 10.1021/cs300240x

    12. [12]

      (12) Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Muller, J. O.; Schlogl, R.; Carlsson, J. M. J. Mater. Chem. 2008, 18 (41), 4893. doi: 10.1039/B800274F

    13. [13]

      (13) Zhang, Z. H.; Leinenweber, K.; Bauer, M.; Garvie, L. A. J.; McMillan, P. F.; Wolf, G. H. J. Am. Chem. Soc. 2001, 123 (32), 7788. doi: 10.1021/ja0103849

    14. [14]

      (14) Li, X. H.; Zhang, J. S.; Chen, X. F.; Fischer, A.; Thomas, A.; Antonietti, M.; Wang, X. C. Chem. Mater. 2011, 23 (19), 4344. doi: 10.1021/cm201688v

    15. [15]

      (15) Jürgens, B.; Irran, E.; Senker, J.; Kroll, P.; Müller, H.; Schnick, W. J. Am. Chem. Soc. 2003, 125 (34), 10288. doi: 10.1021/ja0357689

    16. [16]

      (16) Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nature Materials 2009, 8 (1), 76. doi: 10.1038/NMAT2317

    17. [17]

      (17) Wirth, J.; Neumann, R.; Antonietti, M.; Saalfrank, P. Phys. Chem. Chem. Phys. 2014, 16 (30), 15917. doi: 10.1039/c4cp02021a

    18. [18]

      (18) Goettmann, F.; Thomas, A.; Antonietti, M. Angew. Chem. Int. Edit. 2007, 46 (15), 2717. doi: 10.1002/anie.200603478

    19. [19]

      (19) Lin, J. L.; Pan, Z. M.; Wang, X. C. ACS Sustainable Chemistry & Engineering 2014, 2 (3), 353. doi: 10.1021/sc4004295

    20. [20]

      (20) Aijaz, A.; Fujiwara, N.; Xu, Q. J. Am. Chem. Soc. 2014, 136 (19), 6790. doi: 10.1021/ja5003907

    21. [21]

      (21) Huang, Z. J.; Li, F. B.; Chen, B. F.; Lu, T.; Yuan, Y.; Yuan, G. Q. Applied Catalysis B: Environmental 2013, 136-137, 269. doi: 10.1016/j.apcatb.2013.01.057

    22. [22]

      (22) Dong, F.; Wang, Z. Y.; Sun, Y. J.; Ho, W. K.; Zhang, H. D. J. Colloid Interface Sci. 2013, 401, 70. doi: 10.1016/j.jcis.2013.03.034

    23. [23]

      (23) Tahir, M.; Cao, C. B.; Mahmood, N.; Butt, F. K.; Mahmood, A.; Idrees, F.; Hussain, S.; Tanveer, M.; Ali, Z.; Aslam, I. ACS Appl. Mater. Interfaces 2014, 6 (2), 1258. doi: 10.1021/am405076b

    24. [24]

      (24) Shiraishi, Y.; Kanazawa, S.; Sugano, Y.; Tsukamoto, D.; Sakamoto, H.; Ichikawa, S.; Hirai, T. ACS Catal. 2014, 4 (3), 774. doi: 10.1021/cs401208c

    25. [25]

      (25) Cao, S.W.; Yu, J. G. J. Phys. Chem. Lett. 2014, 5 (12), 2101. doi: 10.1021/jz500546b

    26. [26]

      (26) Chen, X. F.; Jun, Y. S.; Takanabe, K.; Maeda, K.; Domen, K.; Fu, X. Z.; Antonietti, M.; Wang, X. C. Chem. Mater. 2009, 21 (18), 4093. doi: 10.1021/cm902130z

    27. [27]

      (27) Unni, S. M.; Illathvalappil, R.; Gangadharan, P. K.; Bhange, S. N.; Kurungot, S. Chem. Commun. 2014, 50 (89), 13769. doi: 10.1039/c4cc06180b

    28. [28]

      (28) Zheng, Y.; Liu, J.; Liang, J.; Jaroniec, M.; Qiao, S. Z. Energy & Environmental Science 2012, 5 (5), 6717. doi: 10.1039/c2ee03479d

    29. [29]

      (29) Zheng, Y.; Jiao, Y.; Chen, J.; Liu, J.; Liang, J.; Du, A. J.; Zhang, W. M.; Zhu, Z. H.; Smith, S. C.; Jaroniec, M.; Lu, G. Q.; Qiao, S. Z. J. Am. Chem. Soc. 2011, 133 (50), 20116. doi: 10.1021/ja209206c

    30. [30]

      (30) Kattel, S.; Atanassov, P.; Kiefer, B. Phys. Chem. Chem. Phys. 2013, 15 (1), 148. doi: 10.1039/c2cp42609a

    31. [31]

      (31) Mansor, N.; Jorge, A. B.; Corà, F.; Gibbs, C.; Jervis, R.; McMillan, P. F.; Wang, X.; Brett, D. J. J. Phys. Chem. C 2014, 118 (13), 6831. doi: 10.1021/jp412501j

    32. [32]

      (32) Zhu, J. J.; Wei, Y. C.; Chen, W. K.; Zhao, Z.; Thomas, A. Chem. Commun. 2010, 46 (37), 6965. doi: 10.1039/c0cc01432j

    33. [33]

      (33) Ma, X. G.; Lv, Y. H.; Xu, J.; Liu, Y. F.; Zhang, R. Q.; Zhu, Y. F. J. Phys. Chem. C 2012, 116 (44), 23485. doi: 10.1021/jp308334x

    34. [34]

      (34) Delley, B. Phys. Rev. B 2002, 66 (15), 155125. doi: 10.1103/PhysRevB.66.155125

    35. [35]

      (35) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77 (18), 3865. doi: 10.1103/PhysRevLett.77.3865

    36. [36]

      (36) Stampfl, C.; Van deWalle, C. G. Phys. Rev. B 1999, 59 (8), 5521. doi: 10.1103/PhysRevB.59.5521

    37. [37]

      (37) Heyd, J.; Scuseria, G. E. J. Chem. Phys. 2004, 121 (3), 1187. doi: 10.1063/1.1760074

    38. [38]

      (38) Heyd, J.; Peralta, J. E.; Scuseria, G. E.; Martin, R. L. J. Chem. Phys. 2005, 123 (17), 174101. doi: 10.1063/1.2085170

    39. [39]

      (39) Pan, H.; Zhang, Y.W.; Shenoy, V. B.; Gao, H. J. ACS Catal. 2011, 1 (2), 99. doi: 10.1021/cs100045u

    40. [40]

      (40) Bojdys, M. J.; Müller, J. O.; Antonietti, M.; Thomas, A. Chem. Eur. J. 2008, 14 (27), 8177. doi: 10.1002/chem.200800190

    41. [41]

      (41) Teter, D. M.; Hemley, R. J. Science 1996, 271 (5245), 53. doi: 10.1126/science.271.5245.53

    42. [42]

      (42) Xu, Y.; Gao, S. P. Int. J. Hydrogen Energy 2012, 37 (15), 11072. doi: 10.1016/j.ijhydene.2012.04.138

    43. [43]

      (43) Wu, F.; Liu, Y. F.; Yu, G. X.; Shen, D. F.; Wang, Y. L.; Kan, E. J. J. Phys. Chem. Lett. 2012, 3 (22), 3330. doi: 10.1021/jz301536k

    44. [44]

      (44) Wu, H. Z.; Liu, L. M.; Zhao, S. J. Phys. Chem. Chem. Phys. 2014, 16 (7), 3299. doi: 10.1039/c3cp54333a

    45. [45]

      (45) Mattesini, M.; Matar, S. F.; Etourneau, J. J. Mater. Chem. 2000, 10 (3), 709. doi: 10.1039/a908903i

    46. [46]

      (46) Khabashesku, V. N.; Zimmerman, J. L.; Margrave, J. L. Chem. Mater. 2000, 12 (11), 3264. doi: 10.1021/cm000328r

    47. [47]

      (47) Lim, D. H.; Wilcox, J. J. Phys. Chem. C 2011, 115 (46), 22742. doi: 10.1021/jp205244m

  • 加载中
    1. [1]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    4. [4]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    5. [5]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    6. [6]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    7. [7]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    8. [8]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    9. [9]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    10. [10]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    11. [11]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    12. [12]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    13. [13]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    14. [14]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    15. [15]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    16. [16]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    17. [17]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    18. [18]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    19. [19]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    20. [20]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

Metrics
  • PDF Downloads(0)
  • Abstract views(990)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return