Citation: CAI Kai-Cong, ZHENG Xuan, LIU Ya-Nan, LIU Shan-Hong, DU Fen-Fen. Correlation between Amide-I Spectra and Structural Features of Glycine Dipeptide[J]. Acta Physico-Chimica Sinica, ;2016, 32(5): 1289-1296. doi: 10.3866/PKU.WHXB201602291 shu

Correlation between Amide-I Spectra and Structural Features of Glycine Dipeptide

  • Corresponding author: CAI Kai-Cong, 
  • Received Date: 24 December 2015
    Available Online: 29 February 2016

    Fund Project: 国家自然科学基金(21103021) (21103021)福建省高校杰出青年科学人才培育计划(JA13063)资助项目 (JA13063)

  • Structural and spectroscopic features of a model dipeptide, glycine dipeptide (GLYD), were systematically investigated in the gas phase and in aqueous solution. Normal mode analysis was performed on the representative GLYD-D2O clusters selected from molecular dynamics (MD) trajectory for the vibrational parameters of amide-I mode, which is known to be sensitive to the secondary structure of proteins. On this basis, the correlation between the vibrational spectrum and the structural features of specific groups in the polypeptide was constructed. The electrostatic potential from the solvent molecules was calculated and projected onto the backbone of GLYD, and related to the amide-I frequency difference for GLYD in gas phase and solution phase. The secondary structure-dependent normal mode amide-I frequency database was also introduced for the consideration of the possible vibrational coupling that is intrinsically included in GLYD conformers. An electrostatic frequency map with secondary structural sensitivity was then built for the fast and accurate vibrational frequency prediction of the amide-I vibrational band for polypeptides in solution.
  • 加载中
    1. [1]

      (1) Carrell, R.W.; Lomas, D. A. Lancet 1997, 350, 134. doi: 10.1016/S0140-6736(97)02073-4

    2. [2]

      (2) Savelieff, M. G.; DeToma, A. S.; Derrick, J. S.; Lim, M. H. Accoutns Chem. Res. 2014, 47, 2475. doi: 10.1021/ar500152x

    3. [3]

      (3) Dill, K. A.; MacCallum, J. L. Science 2012, 338, 1042. doi: 10.1126/science.1219021

    4. [4]

      (4) DeToma, A. S.; Salamekh, S.; Ramamoorthy, A.; Lim, M. H. Chem. Soc. Rev. 2012, 41, 608. doi: 10.1039/C1CS15112F

    5. [5]

      (5) Krimm, S.; Bandekar, J. Adv. Protein Chem. 1986, 38, 181. doi: 10.1016/S0065-3233(08)60528-8

    6. [6]

      (6) Barber-Armstrong,W.; Donaldson, T.;Wijesooriya, H.; Silva, R. A. G. D.; Decatur, S. M. J. Am. Chem. Soc. 2004, 126, 2339. doi: 10.1021/ja037863n

    7. [7]

      (7) Huang, C. Y.; Getahun, Z.; Zhu, Y.; Klemke, J.W.; DeGrado, W. F.; Gai, F. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 2788. doi: 10.1073/pnas.052700099

    8. [8]

      (8) Du, D.; Zhu, Y.; Huang, C. Y.; Gai, F. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 15915. doi: 10.1073/pnas.0405904101

    9. [9]

      (9) Malolepsza, E.; Straub, J. E. J. Phys. Chem. B 2014, 118, 7848. doi: 10.1021/jp412827s

    10. [10]

      (10) Woys, A. M.; Almeida, A. M.;Wang, L.; Chiu, C. C.; McGovern, M.; de Pablo, J. J.; Skinner, J. L.; Gellman, S. H.; Zanni, M. T. J. Am. Chem. Soc. 2012, 134, 19118. doi: 10.1021/ja3074962

    11. [11]

      (11) Kim, Y. S.;Wang, J.; Hochstrasser, R. M. J. Phys. Chem. B 2005, 109, 7511. doi: 10.1021/jp044989d

    12. [12]

      (12) Moran, S. D.; Zanni, M. T. J. Phys. Chem. Lett. 2014, 5, 1984. doi: 10.1021/jz500794d

    13. [13]

      (13) Jones, K. C.; Peng, C. S.; Tokmakoff, A. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 2828. doi: 10.1073/pnas.1211968110

    14. [14]

      (14) Kim, H.; Cho, M. Chem. Rev. 2013, 113, 5817. doi: 10.1021/cr3005185

    15. [15]

      (15) Tucker, M. J.; Abdo, M.; Courter, J. R.; Chen, J.; Brown, S. P.; Smith, A. B.; Hochstrasser, R. M. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 17314. doi: 10.1073/pnas.1311876110

    16. [16]

      (16) Kim, Y. S.; Hochstrasser, R. M. J. Phys. Chem. B 2009, 113, 8231. doi: 10.1021/jp8113978

    17. [17]

      (17) Wang, J. P. Chin. Sci. Bull. 2007, 52, 1221. [王建平. 科学通报, 2007, 52, 1221.]

    18. [18]

      (18) Zheng, J. R. Physics 2010, 39, 162. [郑俊荣. 物理, 2010, 39, 162.]

    19. [19]

      (19) Carr, J. K.; Zabuga, A. V.; Roy, S.; Rizzo, T. R.; Skinner, J. L. J. Chem. Phys. 2014, 140, 224111. doi: 10.1063/1.4882059

    20. [20]

      (20) Jansen, T. L. C. J. Phys. Chem. B 2014, 118, 8162. doi: 10.1021/jp5012445

    21. [21]

      (21) Reppert, M.; Tokmakoff, A. J. Chem. Phys. 2013, 138, 134116/1. doi: 10.1063/1.4798938

    22. [22]

      (22) Lin, Y. S.; Shorb, J. M.; Mukherjee, P.; Zanni, M. T.; Skinner, J. L. J. Phys. Chem. B 2009, 113, 592. doi: 10.1021/jp807528q

    23. [23]

      (23) Wang, L.; Middleton, C. T.; Zanni, M. T.; Skinner, J. L. J. Phys. Chem. B 2011, 115, 3713. doi: 10.1021/jp200745r

    24. [24]

      (24) Dijkstra, A. G.; Jansen, T. L. C.; Knoester, J. J. Phys. Chem. B 2011, 115, 5392. doi: 10.1021/jp109431a

    25. [25]

      (25) Lee, H.; Choi, J. H.; Cho, M. J. Chem. Phys. 2012, 137, 114307. doi: 10.1063/1.4751477

    26. [26]

      (26) Reppert, M.; Tokmakoff, A. J. Chem. Phys. 2015, 143, 061102. doi: 10.1063/1.4928637

    27. [27]

      (27) Cai, K.; Su, T.; Lin, S.; Zheng, R. Spectrochim. Acta A 2014, 117, 548. doi: 10.1016/j.saa.2013.08.058

    28. [28]

      (28) Shi, J. P.; Zhao, J.; Yang, F.;Wang, J. P. Acta Phys. -Chim. Sin. 2013, 29, 695. [石纪培, 赵娟, 杨帆, 王建平. 物理化学学报, 2013, 29, 695.] doi: 10.3866/PKU.WHXB201302213

    29. [29]

      (29) Cai, K.; Du, F.; Zheng, X.; Liu, J.; Zheng, R.; Zhao, J.;Wang, J. J. Phys. Chem. B 2016, 120, 1069. doi: 10.1021/acs.jpcb.5b11643

    30. [30]

      (30) Jansen, T. L. C.; Knoester, J. J. Phys. Chem. B 2006, 110, 22910. doi: 10.1021/jp064795t

    31. [31]

      (31) Phillips, J. C.; Braun, R.;Wang,W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Klaus, S. J. Comput. Chem. 2005, 26, 1781. doi: 10.1002/jcc.20289

    32. [32]

      (32) MacKerell, A. D., Jr.; Bashford, D.; Bellott, M.; Dunbrack, R. L., Jr.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher,W. E., III; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.;Watanabe, M.;Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M. J. Phys. Chem. B 1998, 102, 3586. doi: 10.1021/jp973084f

    33. [33]

      (33) Jorgensen,W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926. doi: 10.1063/1.445869

    34. [34]

      (34) Jamróz, M. H. Vibrational Energy Distribution Analysis VEDA 4; Warsaw: Poland, 2004-2010.

    35. [35]

      (35) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.01; Gaussian Inc.:Wallingford, CT, 2009.

    36. [36]

      (36) Schmidt, J. R.; Corcelli, S. A.; Skinner, J. L. J. Chem. Phys. 2004, 121, 8887. doi: 10.1063/1.1791632

    37. [37]

      (37) Papamokos, G. V.; Demetropoulos, I. N. J. Phys. Chem. A 2004, 108, 7291. doi: 10.1021/jp049563d

    38. [38]

      (38) Kim, Y. S.; Hochstrasser, R. M. J. Phys. Chem. B 2005, 109, 6884. doi: 10.1021/jp0449511

    39. [39]

      (39) Pohl, G.; Perczel, A.; Vass, E.; Magyarfalvi, G.; Tarczay, G. Phys. Chem. Chem. Phys. 2007, 9, 4698. doi: 10.1039/b705098d

    40. [40]

      (40) Cormanich, R. A.; Rittner, R.; Buhl, M. RSC Adv. 2015, 5, 13052. doi: 10.1039/C4RA16472E

    41. [41]

      (41) Saven, J. G.; Skinner, J. L. J. Chem. Phys. 1993, 99, 4391. doi: 10.1063/1.466092

    42. [42]

      (42) Kubo, R. Advances in Chemical Physcis; JohnWiley & Sons, Inc.: New York, 2007; p 101.

    43. [43]

      (43) Han, C.;Wang, J. ChemPhysChem 2012, 13, 1522. doi: 10.1002/cphc.v13.6

  • 加载中
    1. [1]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    2. [2]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    3. [3]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    4. [4]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    5. [5]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    6. [6]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    7. [7]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    8. [8]

      Liqiang Huang Peng Lin . 数-图分析法解释仪器分析实验课程教学中的难点. University Chemistry, 2025, 40(6): 353-359. doi: 10.12461/PKU.DXHX202407074

    9. [9]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    10. [10]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    11. [11]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    12. [12]

      Wei Huang Weiwei Chen Yongxing Tang . Green Mountains and Blue Waters Spanning Nine Centuries: Decrypting “The Picture of a Thousand Miles of Rivers and Mountains” from a Chemical Perspective. University Chemistry, 2024, 39(9): 189-195. doi: 10.12461/PKU.DXHX202312075

    13. [13]

      Zhonghong Yan Chunxia Li Ruolin Yang . Analysis of the Use and Effectiveness of Concept Mapping Assignments in English Medium Instruction of General Chemistry. University Chemistry, 2025, 40(4): 224-231. doi: 10.12461/PKU.DXHX202405138

    14. [14]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    15. [15]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    16. [16]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    17. [17]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    18. [18]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    19. [19]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    20. [20]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

Metrics
  • PDF Downloads(0)
  • Abstract views(884)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return