Citation: WU Shao-Gui, FENG Dan. Free Energy Calculation for Base Pair Dissociation in a DNA Duplex[J]. Acta Physico-Chimica Sinica, ;2016, 32(5): 1282-1288. doi: 10.3866/PKU.WHXB201602185 shu

Free Energy Calculation for Base Pair Dissociation in a DNA Duplex

  • Corresponding author: WU Shao-Gui, 
  • Received Date: 16 December 2015
    Available Online: 16 February 2016

    Fund Project: 国家自然科学基金(11405113) (11405113)四川省科技厅项目(2010JY0122) (2010JY0122)四川师范大学科学研究基金(10MSL02)资助 (10MSL02)

  • DNA is the main genetic material for living organisms including many viruses. DNA duplex, coded with A=T and G≡C base pairs, is well suited for biological information storage. The interactions between two bases in a base pair contribute to the stability of DNA duplex, and are further related to gene replication and transcription. In this study, we use all-atom Molecular dynamics (MD) simulations combined with Umbrella sampling (US) method to determine the free energy profiles and explore the molecular details for base pair dissociations. Four groups of DNA duplexes with different sequences have been constructed and a total of 4.3 μs MD simulations have been carried out. In the potential of mean force (PMF) profile for G≡C base pair dissociation (denoted as PMF-PGC), we observed three peaks, which correspond to the three moments G≡C base pair loses its three hydrogen bonds respectively. Differently, A=T base pair loses its two hydrogen bonds within a very short time. As a result, only one hydrogen bond rupture peak was observed in its PMF curve (denoted as PMF-PAT). Compared with PMF-PAT, the overall free energy barrier in PMF-PGC is higher, which is due to the better stability of G≡C than A=T. In the latter sections of both PMFs, free energies are still increasing, which is mainly resulted from the rigidity of DNA duplex backbone. We have also investigated the impact of neighboring base pairs on the stability of middle one. It is found that neighboring G≡C base pairs increase the stability of A=T base pair while neighboring C≡G base pairs reduce the stability of A=T base pair. Additionally, neighboring T=A base pairs have little influence on the stability of A=T base pair.
  • 加载中
    1. [1]

      (1) Cressey, D. Nature 2015, 526 (7573), 307. doi: 10.1038/nature.2015.18515

    2. [2]

      (2) Peyrard, M.; Bishop, A. R. Phys. Rev. Lett. 1989, 62 (23), 2755. doi: 10.1103/PhysRevLett.62.2755

    3. [3]

      (3) Santalucia, J. Proc. Natl. Acad. Sci. U. S. A. 1998, 95 (4), 1460. doi: 10.1073/pnas.95.4.1460

    4. [4]

      (4) Wu, S. G.; Gao, X. T.; Li, Q.; Liao, J.; Xu, C. G. Acta Phys. -Chim. Sin. 2015, 31 (9), 1803. [伍绍贵, 高晓彤, 李权, 廖杰, 徐成刚. 物理化学学报, 2015, 31 (9), 1803]. doi: 10.3866/PKU.WHXB201508062

    5. [5]

      (5) Meng, X. M.; Zhang, S. L.; Zhang, Q. G. Acta Phys. -Chim. Sin. 2016, 32 (2), 436. [孟现美, 张少龙, 张庆刚. 物理化学学报, 2016, 32 (2), 436]. doi: 10.3866/PKU.WHXB201511302

    6. [6]

      (6) Silva, D. A.; Weiss, D. R.; Avila, F. P.; Da, L. T.; Levitt, M.; Wang, D.; Huang, X. Proc. Natl. Acad. Sci. U. S. A. 2014, 111 (21), 7665. doi: 10.1073/pnas.1315751111

    7. [7]

      (7) Mackerell, A. D.; Banavali, N. K. J. Comput. Chem. 2000, 21 (2), 105. doi: 10.1002/(SICI)1096-987X(20000130)21:2<105::AID-JCC3>3.0.CO;2-P

    8. [8]

      (8) Ge, Z.; Li, Q.; Wang, Y. J. Chem. Theory Comput. 2014, 10 (7), 2751. doi: 10.1021/ct500194s

    9. [9]

      (9) Delemotte, L.; Tarek, M. J. Membr. Biol. 2012, 245 (9), 531. doi: 10.1007/s00232-012-9434-6

    10. [10]

      (10) Da, L.; Avila, F. P.; Wang, D.; Huang, X. PLoS Comput. Biol. 2013, 9 (4), e1003020. doi: 10.1371/journal.pcbi.1003020

    11. [11]

      (11) Yang, L. J.; Gao, Y. Q. Acta Phys. -Chim. Sin. 2016, 32 (1), 313. [杨立江, 高毅勤. 物理化学学报, 2016, 32 (1), 313.] doi: 10.3866/PKU.WHXB201512161

    12. [12]

      (12) Kutzner, C.; Van Der Spoel, D.; Fechner, M.; Lindahl, E.; Schmitt, U.W.; De Groot, B. L.; Grubmüller, H. J. Comput. Chem. 2007, 28 (12), 2075. doi: 10.1002/jcc.20703

    13. [13]

      (13) Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M. R.; Smith, J. C.; Kasson, P. M.; van der Spoel, D. Bioinformatics 2013, 29 (7), 845. doi: 10.1093/bioinformatics/btt055

    14. [14]

      (14) Hess, B.; Kutzner, C.; Van Der Spoel, D.; Lindahl, E. J. Chem. Theory Comput. 2008, 4 (3), 435. doi: 10.1021/ct700301q

    15. [15]

      (15) Perez, A.; Marchan, I.; Svozil, D.; Sponer, J.; Cheatham, T. E., III; Laughton, C. A.; Orozco, M. Biophys. J. 2007, 92 (11), 3817. doi: 10.1529/biophysj.106.097782

    16. [16]

      (16) Miyamoto, S.; Kollman, P. A. J. Comput. Chem. 1992, 13 (8), 952. doi: 10.1002/jcc.540130805

    17. [17]

      (17) Ito, H. O.; Soutome, S. M. J. Microbiol. Methods 2003, 55 (1), 29. doi: 10.1016/S0167-7012(03)00111-8

    18. [18]

      (18) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103 (19), 8577. doi: 10.1063/1.470117

    19. [19]

      (19) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98 (12), 10089. doi: 10.1063/1.464397

    20. [20]

      (20) Berendsen, H. J.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. J. Chem. Phys. 1984, 81 (8), 3684. doi: 10.1063/1.448118

    21. [21]

      (21) Bussi, G.; Donadio, D.; Parrinello, M. J. Chem. Phys. 2007, 126 (1), 014101. doi: 10.1063/1.2408420

    22. [22]

      (22) Zimmermann, K. J. Comput. Chem. 1991, 12 (3), 310. doi: 10.1002/jcc.540120305

    23. [23]

      (23) Isralewitz, B.; Gao, M.; Schulten, K. Curr. Opin. Struc. Biol. 2001, 11, 224. doi: 10.1016/S0959-440X(00)00194-9

    24. [24]

      (24) Hub, J. S.; De Groot, B. L.; Van Der Spoel, D. J. Chem. Theory Comput. 2010, 6 (12), 3713. doi: 10.1021/ct100494z

    25. [25]

      (25) Huang, X.; Wang, D.; Weiss, D. R.; Bushnell, D. A.; Kornberg, R. D.; Levitt, M. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (36), 15745. doi: 10.1073/pnas.1009898107

  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    3. [3]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    4. [4]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    5. [5]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    6. [6]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    7. [7]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    8. [8]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    9. [9]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    12. [12]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    13. [13]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    14. [14]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    15. [15]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    16. [16]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    17. [17]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    18. [18]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    19. [19]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    20. [20]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

Metrics
  • PDF Downloads(0)
  • Abstract views(855)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return