Citation:
YANG Yi, LUO Lai-Ming, DU Juan-Juan, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Hollow Pt-Based Nanocatalysts Synthesized through Galvanic Replacement Reaction for Application in Proton Exchange Membrane Fuel Cells[J]. Acta Physico-Chimica Sinica,
;2016, 32(4): 834-847.
doi:
10.3866/PKU.WHXB201601211
-
Pt-based nanocatalysts are irreplaceable for proton exchange membrane fuel cells (PEMFCs), while the low reserves and high cost of Pt severely impede their commercialization. Tremendous efforts have been devoted to reduce the amount of precious metals and improve their electrocatalytic performance at the same time. Nanocatalysts with a hollow interior possess a large active area, high catalytic activity, good stability, and significantly reduce the amount of noble metal. The synthesis methods for their preparation are various, wherein the galvanic replacement reaction without additional procedure to remove the core, without the functionalization to the template surface and with ease of control, is the main method to prepare hollow structural nanocatalysts. We review the recent developments of hollow Pt-based nanocatalysts synthesized by the galvanic replacement reaction. The further challenges and developments of hollow Pt-based nanocatalysts are also discussed.
-
-
-
[1]
(1) Debe, M. K. Nature 2012, 486, 43. doi: 10.1038/nature11115
-
[2]
(2) Wang, Y. J.; Zhao, N. N.; Fang, B. Z.; Li, H.; Bi, X. T.;Wang, H. J. Chem. Rev. 2015, 115, 3433. doi: 10.1021/cr500519c
-
[3]
(3) Zhu, C. Z.; Du, D.; Eychmüller, A.; Lin, Y. H. Chem. Rev. 2015, 115, 8896. doi: 10.1021/acs.chemrev.5b00255
-
[4]
(4) Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.;Wang, Z. L. Science 2007, 316, 732. doi: 10.1126/science.1140484
-
[5]
(5) Zhou, Z. Y.; Tian, N.; Li, J. T.; Broadwell, I.; Sun, S. G. Chem. Soc. Rev. 2011, 40, 4167. doi: 10.1039/c0cs00176g
-
[6]
(6) Kakati, N.; Maiti, J.; Lee, S. H.; Jee, S. H.; Viswanathan, B.; Yoon, Y. S. Chem. Rev. 2015, 114, 12397.
-
[7]
(7) Kung, C. C.; Lin, P. Y.; Xue, Y. H.; Akolkar, R.; Dai, L. M.; Yu, X.; Liu, C. C. J. Power Sources 2014, 256, 329. doi: 10.1016/j.jpowsour.2014.01.074
-
[8]
(8) Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z.W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M.; Chi, M.; More, K. L.; Li, Y. D.; Markovic, N. M.; Somorjai, G. A.; Yang, P. D.; Stamenkovic, V. R. Science 2014, 343, 1339. doi: 10.1126/science.1249061
-
[9]
(9) Gunji, T.; Tanabe, T.; Jeevagan, A. J.; Usui, S.; Tsuda, T.; Kaneko, S.; Saravanan, G.; Abe, H.; Matsumoto, F. J. Power Sources 2015, 273, 990. doi: 10.1016/j.jpowsour.2014.09.182
-
[10]
(10) Jia, Y. Y.; Jiang, Y. Q.; Zhang, J.W.; Zhang, L.; Chen, Q. L.; Xie, Z. X.; Zheng, L. S. J. Am. Chem. Soc. 2014, 136, 3748. doi: 10.1021/ja413209q
-
[11]
(11) Chen, Y.; Yang, J.; Yang, Y.; Peng, Z. Y.; Li, J. H.; Mei, T.; Wang, J. Y.; Hao, M.; Chen, Y. L.; Xiong, W. L.; Zhang, L.; Wang, X. B. Chem. Commun. 2015, 51, 10490. doi: 10.1039/C5CC01803J
-
[12]
(12) Hong, W.;Wang, J.;Wang, E. K. Small 2014, 10, 3262. doi: 10.1002/smll.v10.16
-
[13]
(13) Cui, Z. M.; Yang, M. H.; Chen, H.; Zhao, M. T.; DiSalvo, F. J. ChemSusChem 2014, 7, 3356. doi: 10.1002/cssc.v7.12
-
[14]
(14) Beyhan, S.; Léger, J. M.; Kadırgan, F. Appl. Catal. B: Environ. 2014, 144, 66. doi: 10.1016/j.apcatb.2013.07.020
-
[15]
(15) Hong, W.; Shang, C. C.;Wang, J.;Wang, E. K. Nanoscale 2015, 7, 9985. doi: 10.1039/C5NR01679G
-
[16]
(16) Scofield, M. E.; Koenigsmann, C.;Wang, L.; Liu, H. Q.; Wong, S. S. Energy Environ. Sci. 2015, 8, 350. doi: 10.1039/C4EE02162B
-
[17]
(17) Tripkovic, V.; Hansen, H. H.; Rossmeislbc, J.; Vegge, T. Phys. Chem. Chem. Phys. 2015, 17, 11647. doi: 10.1039/C5CP00071H
-
[18]
(18) Chen, X. T.;Wang, H.;Wang, Y.; Bai, Q. G.; Gao, Y. L.; Zhang, Z. H. Catalysts 2015, 5, 1003. doi: 10.3390/catal5031003
-
[19]
(19) Liu, B.; Liao, S. J.; Liang, Z. X. Prog. Chem. 2011, 23, 852. [刘宾, 廖世军, 梁振兴. 化学进展, 2011, 23, 852.]
-
[20]
(20) Zhou, X.W.; Gan, Y. L.; Du, J. J.; Tian, D. N.; Zhang, R. H.; Yang, C. Y.; Dai, Z. X. J. Power Sources 2013, 232, 310.
-
[21]
(21) Zhang, L.; Roling, L. T.;Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S.; Park, J.; Herron, J. A.; Xie, Z. X.; Mavrikakis, M.; Xia, Y. N. Science 2015, 349, 412. doi: 10.1126/science.aab0801
-
[22]
(22) Zhang, Y.; Hsieh, Y. C.; Volkov, V.; Su, D.; An, W.; Si, R.; Zhu, Y. M.; Liu, P.;Wang, J. X.; Adzic, R. R. ACS Catal. 2014, 4, 738. doi: 10.1021/cs401091u
-
[23]
(23) Chen, Z.W.; Higgins, D.; Yu, A. P.; Zhang, L.; Zhang, J. J. Energ. Environ. Sci. 2011, 4, 3167. doi: 10.1039/c0ee00558d
-
[24]
(24) Hong, W. T.; Risch, M.; Stoerzinger, K. A.; Grimaud, A.; Suntivich, J.; Shao-Horm, Y. Energ. Environ. Sci. 2015, 8, 1404. doi: 10.1039/C4EE03869J
-
[25]
(25) Lin, L.; Zhu, Q.; Xu, A.W. J. Am. Chem. Soc. 2014, 136, 11027. doi: 10.1021/ja504696r
-
[26]
(26) Lou, X.W.; Archer, L. A.; Yang, Z. C. Adv. Mater. 2008, 20, 3987. doi: 10.1002/adma.v20:21
-
[27]
(27) Du, N.; Zhang, H.;Wu, P.; Yu, J. X.; Yang, D. R. J. Phys. Chem. C 2009, 113, 17387. doi: 10.1021/jp906349c
-
[28]
(28) Xia, Y. D.; Mokaya, R. Adv. Mater. 2004, 16, 1553.
-
[29]
(29) Chu, Y. Y.;Wang, Z. B.; Jiang, Z. Z.; Gu, D. M.; Yin, G. P. J. Power Sources 2012, 203, 17.
-
[30]
(30) Ataee-Esfahani, H.; Nemoto, Y.;Wang, L.; Yamauchi, Y. Chem. Commun. 2011, 47, 3885. doi: 10.1039/c0cc05233g
-
[31]
(31) Ma, C. A.; Kang, L. Z.; Shi, M. Q.; Lang, X. L.; Jiang, Y. K. J. Alloy. Compd. 2014, 588, 481. doi: 10.1016/j. jallcom.2013.11.090
-
[32]
(32) Ma, Y. Y.;Wang, R. F.;Wang, H.; Key, J.; Ji, S. RSC Adv. 2015, 5, 9837. doi: 10.1039/C4RA14423F
-
[33]
(33) Kim, S.W.; Kim, M.; Lee, W. Y.; Hyeon, T. J. Am. Chem. Soc. 2002, 124, 7642. doi: 10.1021/ja026032z
-
[34]
(34) Yu, Y. H.; Yin, X.; Kvit, A.;Wang, X. D. Nano Lett. 2014, 14, 2528. doi: 10.1021/nl5002907
-
[35]
(35) Choi, B. S.; Kim, S. M.; Gong, J.; Lee, Y.W.; Kang, S.W.; Lee, H. S.; Park, J. Y.; Han, S.W. Chem. Eur. J. 2014, 20, 11669. doi: 10.1002/chem.201403992
-
[36]
(36) Li, C. L.; Jiang, B.; Imura, M.; Malgras, V.; Yamauchi, Y. Chem. Commun. 2014, 50, 15337. doi: 10.1039/C4CC07071B
-
[37]
(37) Ataee-Esfahani, H.; Nemoto, Y.;Wang, L.; Yamauchi, Y. Chem. Commun. 2011, 47, 3885. doi: 10.1039/c0cc05233g
-
[38]
(38) Yang, R. Z.; Li, H.; Qiu, X. P.; Chen, L. Q. Chem. Eur. J. 2006, 12, 4083.
-
[39]
(39) Galeano, C.; Meier, J. C.; Soorholtz, M.; Bongard, H.; Baldizzone, C.; Mayrhofer, K. J. J.; Schuüth, F. ACS Catal. 2014, 4, 3856. doi: 10.1021/cs5003492
-
[40]
(40) Lin, G.; Lu, W. New J. Chem. 2015, 39, 4231. doi: 10.1039/C5NJ00595G
-
[41]
(41) Jiao, C. P.; Huang, Z. L.; Zhang, H. J.; Zhang, S.W. Prog. Chem. 2015, 27, 472. [焦成鹏, 黄自力, 张海军, 张少伟. 化学进展, 2015, 27, 472.]
-
[42]
(42) Lai, X. Y.; Halpert, J. E.;Wang, D. Energy Environ. Sci. 2012, 5, 5604. doi: 10.1039/C1EE02426D
-
[43]
(43) Xia, X. H.;Wang, Y.; Ruditskiy, A.; Xia, Y. N. Adv. Mater. 2013, 25, 6313. doi: 10.1002/adma.v25.44
-
[44]
(44) Liang, H. P.; Zhang, H. M.; Hu, J. S.; Guo, Y. G.;Wan, L. J.; Bai, C. L. Angew. Chem. Int. Edit. 2004, 116, 1566.
-
[45]
(45) Xiao, Y. P.;Wan, S.; Zhang, X.; Hu, J.;Wei, Z. D.;Wan, L. J. Chem. Commun. 2012, 48, 10331. doi: 10.1039/c2cc35562k
-
[46]
(46) Xu, W.; He, J.; Gao, L.; Zhang, J.; Hui, J.; Guo, Y.; Li, W.; Yu, C. J. Electroanal. Chem. 2015, 741, 8. doi: 10.1016/j.jelechem.2015.01.004
-
[47]
(47) Wang, J. X.; Ma, C.; Choi, Y. M.; Su, D.; Zhu, Y. M.; Liu, P.; Si, R.; Vukmirovic, M. B.; Zhang, Y.; Adzic, R. R. J. Am. Chem. Soc. 2011, 133, 13551. doi: 10.1021/ja204518x
-
[48]
(48) Liang, H.W.; Liu. S.; Gong, J. Y.;Wang, S. B.;Wang, L.; Yu, S. H. Adv. Mater. 2009, 21, 1850. doi: 10.1002/adma.v21:18
-
[49]
(49) Chen, H. M.; Liu, R. S.; Lo, M. Y.; Chang, S. C.; Tsai, L. D.; Peng, Y. M.; Lee, J. F. J. Phys. Chem. C 2008, 112, 7522. doi: 10.1021/jp711609q
-
[50]
(50) Xiao, Y.; Lv, Q.; Zhu. J. B.; Yao S. K.; Liu, C. P.; Xing, W. RSC Adv. 2014, 4, 21176. doi: 10.1039/c4ra02568g
-
[51]
(51) Kim, Y.; Kim, H. J.; Kim, Y. S.; Choi, S. M.; Seo, M. H.; Kim, W. B. J. Phys. Chem. C 2012, 116, 18093. doi: 10.1021/jp3054795
-
[52]
(52) Kim, S. J.; Ah, C. S.; Jang, D. J. Adv. Mater. 2007, 19, 1064.
-
[53]
(53) Stamenkovic, V. R.; Fowler, B.; Mun, B. S.;Wang, G. F.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Science 2007, 315, 493. doi: 10.1126/science.1135941
-
[54]
(54) Huang, X. Q.; Zhang, H. H.; Guo, C. Y.; Zhou, Z. Y.; Zheng, N. F. Angew. Chem. Int. Edit. 2009, 48, 4808. doi: 10.1002/anie.v48:26
-
[55]
(55) Zhang, H.; Jin, M. S.; Liu, H. Y.;Wang, J. G.; Kim, M. J.; Yang, D. R.; Xie, Z. X.; Liu, J. Y.; Xia, Y. N. ACS Nano 2011, 5, 8212. doi: 10.1021/nn202896q
-
[56]
(56) Hong, J. K.; Kang, S.W.; Choi, B. S.; Kim, D.; Lee, S. B.; Han, S.W. ACS Nano 2012, 6, 2410. doi: 10.1021/nn2046828
-
[57]
(57) Lai, S.; Fu, C.; Chen, Y.;Yu, X.; Lai, X.;Ye, C.; Hu, J. J. Power Sources 2015, 274, 604. doi: 10.1016/j.jpowsour.2014.10.063
-
[58]
(58) Wang, L.; Yamauchi, Y. J. Am. Chem. Soc. 2013, 135, 16762. doi: 10.1021/ja407773x
-
[59]
(59) Liang, H. P.; Guo, Y. G.; Zhang, H. M.; Hu, J. S.;Wan, L. J.; Bai, C. L. Chem. Commun. 2004, 13, 1496.
-
[60]
(60) Lee, D.; Jang, H. Y.; Hong, S.; Park. S. J. Colloid Interface Sci. 2012, 388, 74. doi: 10.1016/j.jcis.2012.08.011
-
[61]
(61) You, H. J.; Zhang, F. L.; Liu, Z.; Fang, J. X. ACS Catal. 2014, 4, 2829. doi: 10.1021/cs500390s
-
[62]
(62) Cai, K.; Liu, J.W.; Zhang, H.; Huang, Z.; Lu, Z. C.; Foda, M. F.; Li, T. T.; Han, H. Y. Chem. Eur. J. 2015, 21, 7556. doi: 10.1002/chem.201406582
-
[63]
(63) Lu, C.; Kong, W.; Zhang, H.; Song, B.;Wang, Z. J. Power Sources 2015, 296, 102. doi: 10.1016/j.jpowsour.2015.07.049
-
[64]
(64) Seo, D.; Song, H. J. Am. Chem. Soc. 2009, 131, 18210. doi: 10.1021/ja907640h
-
[65]
(65) Straney, P. J.; Marbella, L. E.; Andolina, C. M.; Nuhfer, N. T.; Millstone, J. E. J. Am. Chem. Soc. 2014, 136, 7873. doi: 10.1021/ja504294p
-
[66]
(66) Wang, Q. Y.; Cui, X. Q.; Guan, W. M.; Zhang, L.; Fan, X. F.; Shi, Z.; Zheng, W. T. J. Power Sources 2014, 269, 152.
-
[67]
(67) Chen, J. Y.;Wiley, B.; McLellan, J.; Xiong, Y. J.; Li, Z. Y.; Xia, Y. N. Nano Lett. 2005, 5, 2058. doi: 10.1021/nl051652u
-
[68]
(68) Bansal, V.; O′Mullane, A. P.; Bhargava, S. K. Electrochem. Commun. 2009, 11, 1639. doi: 10.1016/j.elecom.2009.06.018
-
[69]
(69) Zhang, W. Q.; Yang, J. Z.; Lu, X. M. ACS Nano 2012, 6, 7397. doi: 10.1021/nn302590k
-
[70]
(70) Kim, Y.; Kim, H.; Kim, W. B. Electrochem. Commun. 2014, 46, 36. doi: 10.1016/j.elecom.2014.06.007
-
[71]
(71) Tsuji, M.; Hamasaki, M.; Yajima, A.; Hattori, M.; Tsuji, T.; Kawazumi, H. Mater. Lett. 2014, 121, 113. doi: 10.1016/j.matlet.2014.01.093
-
[72]
(72) Kim, M. R.; Lee, D. K.; Jang, D. J. Appl. Catal. B: Environ. 2011, 103, 253. doi: 10.1016/j.apcatb.2011.01.036
-
[73]
(73) Lin, C. T.; Shiao, M. H.; Chang, M. N.; Chu, N.; Chen, Y.W.; Peng, Y. H.; Liao, B. H.; Huang, H. J.; Hsiao, C. N.; Tseng, F. G. Nanoscale Res. Lett. 2015, 10, 74. doi: 10.1186/s11671-015-0791-9
-
[74]
(74) Ma, D.; Tang, X.; Guo, M.; Lu, H.; Xu, X. Ionics 2015, 21, 1417. doi: 10.1007/s11581-014-1290-1
-
[75]
(75) Hou, P. F.; Cui, P. L.; Liu, H.; Li, J. L.; Yang, J. Nano Res. 2015, 8, 512. doi: 10.1007/s12274-014-0663-0
-
[76]
(76) Vasquez, Y.; Sra, A. K.; Schaak, R. E. J. Am. Chem. Soc. 2005, 127, 12504. doi: 10.1021/ja054442s
-
[77]
(77) Zhou, X.W.; Chen, Q. S.; Zhou, Z. Y.; Sun, S. G. J. Nanosci. Nanotechnol. 2009, 9, 2392. doi: 10.1166/jnn.2009.SE34
-
[78]
(78) Zhou, X.W.; Zhang, R. H. Sun, S. G. Acta Phys.-Chim. Sin. 2010, 26, 3360. [周新文, 张荣华, 孙世刚. 物理化学学报, 2010, 26, 3360.] doi: 10.3866/PKU.WHXB20101125
-
[79]
(79) Zhou, X.W.; Zhang, R. H.; Zeng, D. M.; Sun, S. G. J. Solid State Chem. 2010, 183, 1340. doi: 10.1016/j.jssc.2010.04.003
-
[80]
(80) Zhou, X.W.; Gan, Y. L.; Sun, S. G. Acta Phys. -Chim. Sin. 2012, 28, 2071. [周新文, 甘亚利, 孙世刚. 物理化学学报, 2012, 28, 2071.] doi: 10.3866/PKU.WHXB201205031
-
[81]
(81) Sun, Q.;Wang, S. G.;Wang, R. M. J. Phys. Chem. C 2012, 116, 5352. doi: 10.1021/jp210144p
-
[82]
(82) Luo, B. M.; Yan, X. B.; Xu, S.; Xue, Q. J. Electrochem. Commun. 2013, 30, 71. doi: 10.1016/j.elecom.2013.02.010
-
[83]
(83) Xia, B. Y.;Wu, H. B.;Wang, X.; Lou, X.W. J. Am. Chem. Soc. 2012, 134, 13934. doi: 10.1021/ja3051662
-
[84]
(84) Ding, J. B.; Zhu, X.; Bu, L. Z.; Yao, J. L.; Guo, J.; Guo, S. J.; Huang, X. Q. Chem. Commun. 2015, 51, 9722. doi: 10.1039/C5CC03190G
-
[85]
(85) Du, C. Y.; Chen, M.;Wang, W. G.; Tan, Q.; Xiong, K.; Yin, G. P. J. Power Sources 2013, 240, 630. doi: 10.1016/j.jpowsour.2013.05.023
-
[86]
(86) Su, L.; Shrestha, S.; Zhang, Z. H.; Mustain, W.; Lei, Y. J. Mater. Chem. A 2013, 1, 12293. doi: 10.1039/c3ta13097e
-
[87]
(87) Liu, J.; Xu, C.; Liu, C.;Wang, F.; Liu, H.; Ji, J.; Li, Z. Electrochim. Acta 2015, 152, 425. doi: 10.1016/j.electacta.2014.11.133
-
[88]
(88) Wang, M.; Zhang, W. M.;Wang, J. Z.; Minett, A.; Lo, V.; Liu, H. K.; Chen, J. J. Mater. Chem. A 2013, 1, 2391. doi: 10.1039/c2ta01470j
-
[89]
(89) Zhou, X.W.; Zhang, R. H.; Zhou, Z. Y.; Sun, S. G. J. Power Sources 2011, 196, 5844. doi: 10.1016/j.jpowsour.2011.02.088
-
[90]
(90) Shan, A. X.; Chen, Z. C.; Li, B. Q.; Chen, C. P.;Wang, R. M. J. Mater. Chem. A 2015, 3, 1031. doi: 10.1039/C4TA05812G
-
[91]
(91) Hu, Y. J.;Wu, P.; Zhang, H.; Cai, C. X. Electrochim. Acta 2012, 85, 314.
-
[92]
(92) Dubau, L.; Asset, T.; Chattot, R.; Bonnaud, C.; Vanpeene, V.; Nelayah, J.; Maillard, F. ACS Catal. 2015, 5, 5333. doi: 10.1021/acscatal.5b01248
-
[93]
(93) Sun, Y.; Yang, H.; Yu, X.; Meng, H.; Xu, X. RSC Adv. 2015, 5, 70387. doi: 10.1039/C5RA13383A
-
[94]
(94) Bae, S. J.; Yoo, S. J.; Lim, Y.; Kim. S.; Lim, Y.; Choi, J.; Nahm, K. S.; Hwang, S. J.; Lim, T. H.; Kim, S. K.; Kim, P. J. Mater. Chem. 2012, 22, 8820. doi: 10.1039/c2jm16827h
-
[95]
(95) Dubau, L.; Lopez-Haro, M.; Durst, J.; Guetaz, L.; Bayle- Guillemaud, P.; Chatenet, M.; Maillard, F. J. Mater. Chem. A 2014, 2, 18497. doi: 10.1039/C4TA03975K
-
[96]
(96) Chen, D. J.; Zhou, Z. Y.;Wang, Q.; Xiang, D. M.; Tian, N.; Sun, S. G. Chem. Commun. 2010, 46, 4252. doi: 10.1039/c002964e
-
[97]
(97) Zhao, X.; Zhu, J. B.; Cai, W.W.; Xiao, M. L.; Liang, L.; Liu, C. P.; Xing, W. RSC Adv. 2013, 3, 1763.
-
[98]
(98) Liu, Y.; Zhang, S.; Ren, X.;Wang, Y.; Yan, L.;Wei, Q.; Du, B. RSC Adv. 2015, 5, 57346. doi: 10.1039/C5RA07397A
-
[99]
(99) Zheng, J.; Cullen, D. A.; Forest, R. V.;Wittkopf, J.; Zhuang, Z. B.; Sheng, W. C.; Chen, J. G.; Yan, Y. S. ACS Catal. 2015, 5, 1468. doi: 10.1021/cs501449y
-
[100]
(100) Ye, F.; Yang, J. H.; Hu, W.W.; Liu, H.; Liao, S. J.; Zeng, J. H.; Yang, J. RSC Adv. 2012, 2, 7479. doi: 10.1039/c2ra21140h
-
[101]
(101) Luo, B. M.; Yan, X. B.; Chen, J. G.; Xu, S.; Xue, Q. J. Int. J. Hydrogen Energy 2013, 38, 13011. doi: 10.1016/j.ijhydene.2013.03.139
-
[102]
(102) Yan, L. L.; Jiang, Q. N.; Liu, D. Y.; Zhong, Y.;Wen, F. P.; Deng, X. C.; Zhong, Q. L.; Ren, B.; Tian, Z. Q. Acta Phys. -Chim. Sin. 2010, 26, 2337. [颜亮亮, 江庆宁, 刘德宇, 钟艳, 温飞鹏, 邓小聪, 钟起玲, 任斌, 田中群. 物理化学学报, 2010, 26, 2337.] doi: 10.3866/PKU.WHXB20100835
-
[103]
(103) Hong, W.; Shang, C. S.;Wang, J.;Wang, E. K. Nanoscale 2015, 7, 9985. doi: 10.1039/C5NR01679G
-
[104]
(104) Hao, Y.; Yang, Y.; Hong, L.; Yuan, J.; Niu, L.; Gui, U. ACS Appl. Mater. Inter. 2014, 6, 21986. doi: 10.1021/am5047747
-
[105]
(105) Chen, Y. X.; Lai, S. Q.; Jiang, S. L.; Liu, Y.; Fu, C. L.; Li, A. Q.; Chen, Y. Y.; Lai, X. D.; Hu, J. Q. Mater. Lett. 2015, 157, 15. doi: 10.1016/j.matlet.2015.05.009
-
[106]
(106) Guo, Z. G.; Dai, X. P.; Yang, Y.; Zhang, Z. C.; Zhang, X.; Mi, S. Q.; Xu, K.; Li, Y. F. J. Mater. Chem. A 2013, 1, 13252.
-
[107]
(107) Ryu, J.; Choi, J.; Lim, D. H.; Seo, H. L.; Lee, S. Y.; Sohn, Y.; Park, J. H.; Kim, H. J.; Hong, S. A.; Kim, P.; Yoo, S. J. Appl. Catal. B: Environ. 2015, 174, 526.
-
[108]
(108) Shviro, M.; Polani, S.; Zitoun, D. Nanoscale 2015, 7, 13521.
-
[109]
(109) An, L.; Zhu, M.; Dai, B.; Yu, F. Electrochim. Acta 2015, 176, 222. doi: 10.1016/j.electacta.2015.06.135
-
[110]
(110) Bai, Z.; Huang, R.; Niu, L.; Zhang, Q.; Yang, L.; Zhang, J. Catalysts 2015, 5, 747. doi: 10.3390/catal5020747
-
[111]
(111) Peng, C.; Hu, Y.; Liu, M.; Zheng, Y. J. Power Sources 2015, 278, 69. doi: 10.1016/j.jpowsour.2014.12.056
-
[112]
(112) Li, R.S.; Hao, H.; Cai, W. B.; Huang, T.; Yu, A. S. Electrochem. Commun. 2010, 12, 901. doi: 10.1016/j. elecom.2010.04.016
-
[113]
(113) Hong, W.;Wang, J.;Wang, E. RSC Adv. 2015, 5, 46935. doi: 10.1039/C5RA08300A
-
[114]
(114) Shang, C.; Hong, W.;Wang, J.;Wang, E. J. Power Sources 2015, 285, 12. doi: 10.1016/j.jpowsour.2015.03.092
-
[1]
-
-
-
[1]
Xinyu Miao , Hao Yang , Jie He , Jing Wang , Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051
-
[2]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[3]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[4]
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ−壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081
-
[5]
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071
-
[6]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049
-
[7]
Chaolin Mi , Yuying Qin , Xinli Huang , Yijie Luo , Zhiwei Zhang , Chengxiang Wang , Yuanchang Shi , Longwei Yin , Rutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011
-
[8]
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
-
[9]
Qing Li , Guangxun Zhang , Yuxia Xu , Yangyang Sun , Huan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045
-
[10]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020
-
[11]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[12]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044
-
[13]
Huiwei Ding , Bo Peng , Zhihao Wang , Qiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048
-
[14]
Yushan Cai , Fang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048
-
[15]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016
-
[16]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[17]
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
-
[18]
Yixuan Wang , Canhui Zhang , Xingkun Wang , Jiarui Duan , Kecheng Tong , Shuixing Dai , Lei Chu , Minghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004
-
[19]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[20]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(536)
- HTML views(52)