Citation:
HU Li-Fang, HE Jie, LIU Yuan, ZHAO Yun-Lei, CHEN Kai. Structural Features and Photocatalytic Performance of TiO2-HNbMoO6 Composite[J]. Acta Physico-Chimica Sinica,
;2016, 32(3): 737-744.
doi:
10.3866/PKU.WHXB201512184
-
A novel composite material TiO2-HNbMoO6 was prepared by an intercalation-pillar route. The phase and its microstructure, skeleton feature, spectral-response characteristics, and the interaction between interlayer species and nanosheets were characterized using powder X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), laser Raman spectroscopy (LRS), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), and H2 temperature-programmed reduction (H2-TPR). The specific surface areas of the samples were measured by N2 adsorption-desorption isotherms. The synergistic effect between the host and the guest of the composites was evaluated by the degradation of methylene blue (MB) dye under simulated sunlight. The results, such as the increase of the d-spacing, the absence of TiO2 crystalline phase, and the change of the Nb―O bond in the main body and the Ti―O bond in TiO2 before and after composition, demonstrate that TiO2 is uniformly dispersed in the interlayer of HNbMoO6, indicating the interaction between the host laminates and the guest titanium oxide species. The specific surface area of the composite was four times that of its host material, the narrowing band gap, the better adsorption ability, and the superior photocatalytic activity of TiO2-HNbMoO6 were because of the synergistic effect between the host and the guest.
-
Keywords:
- HNbMoO6,
- TiO2,
- Composite structure,
- Photocatalysis,
- Synergistic effect
-
-
-
[1]
(1) Hou, W. H.; Yan, Q. J.; Peng, B. C.; Fu, X. C. Acta Phys. -Chim. Sin. 1994, 10, 289. [侯文华, 颜其洁, 彭秉成, 傅献彩. 物理化学学报, 1994, 10, 289.] doi: 10.3866/PKU.WHXB19940401
-
[2]
(2) He, J.; Li, Q. J.; Tang, Y.; Yang, P.; Li, A.; Li, R.; Li, H. Z.Appl. Catal. A-Gen. 2012, 443-444, 145. doi: 10.1016/j.apcata.2012.07.036
-
[3]
(3) He, J.; Hu, L. F.; Tang, Y.; Li, H. Z.; Yang, P.; Li, Z. RSC Adv.2014, 4, 22334. doi: 10.1039/c4ra01482k
-
[4]
(4) Wu, J. H.; Uchida, S.; Fujishiro, Y.; Yin, S.; Sato, T. J. Photochem. Photobiol. A 1999, 128, 129. doi: 10.1016/S1010-6030(99)00157-4
-
[5]
(5) Wu, J. H.; Uchida, S.; Fujishiro, Y.; Yin, S.; Sato, T. Int. J. Inorg. Mater. 1999, 1, 253. doi: 10.1016/S1466-6049(99)00038-0
-
[6]
(6) Wu, J. H.; Yin, S.; Lin, Y.; Lin, J. M.; Huang, M. L.; Sato, T. J. Mater. Sci. 2001, 36, 3055.
-
[7]
(7) Wang, L. L.; Wu, J. H.; Li, T. H.; Cheng, Y. G.; Huang, M. L.; Lin. J. M. J. Porous Mat. 2005, 12, 23. doi: 10.1007/s10934-005-5229-9
-
[8]
(8) Botella, P.; Solsona, B.; Nieto, J. M. L.; Concepción, P.; Jordá, J. L.; Doménech-Carbó, M. T. Catal. Today 2010, 158, 162. doi: 10.1016/j.cattod.2010.05.024
-
[9]
(9) Murayama, T.; Chen, J.; Hirata, J.; Matsumoto, K.; Ueda, W.Catal. Sci. Technol. 2014, 4, 4250. doi: 10.1039/C4CY00713A
-
[10]
(10) Zhang, H.; Liu, X. J.; Wang, R. L.; Mi, R.; Li, S. M.; Cui, Y.H.; Deng, Y. F.; Mei, J.; Liu, H. J. Power Sources 2015, 274, 1063. doi: 10.1016/j.jpowsour.2014.10.136
-
[11]
(11) Alemán-Vázquez, L. O.; Hernández-Pérez, F.; Cano-Domínguez, J. L.; Rodríguez-Hernández, A.; García-Gutiérrez, J. L. Fuel 2014, 117, 463. doi: 10.1016/j.fuel.2013.08.085
-
[12]
(12) Tian, H.; Wang, H. X.; Shi, W. M.; Xu, Y. Acta Phys. -Chim. Sin. 2014, 30, 1543. [田红, 王会香, 史卫梅, 徐耀.物理化学学报, 2014, 30, 1543.] doi: 10.3866/PKU.WXHB201406161
-
[13]
(13) Kioka, K.; Honma, T.; Komatsu, T. Opt. Mater. 2011, 33, 1203. doi: 10.1016/j.optmat.2011.02.011
-
[14]
(14) Hsu, S. M.; Wu, J. J.; Yung, S.W.; Chin, T. S.; Zhang, T.; Lee, Y. M.; Chu, C. M.; Ding, J. Y. J. Non-Cryst. Solids 2012, 358, 14. doi: 10.1016/j.jnoncrysol.2011.08.006
-
[15]
(15) Idrees, F.; Cao, C.; Butt, F. K.; Tahir, M.; Shakir, I.; Rizwan, M.; Aslam, I.; Tanveer, M.; Ali, Z. Int. J. Hydrog. Energy2014, 39, 13174. doi: 10.1016/j.ijhydene.2014.06.142
-
[16]
(16) Li, W.; Meitzner, G. D.; Borry, R.W.; Iglesia, E. J. Catal.2000, 191, 373. doi: 10.1006/jcat.1999.2795
-
[17]
(17) Huang, H.; Wang, C.; Huang, J.; Wang, X.M.; Du, Y. K.; Yang, P. Nanoscale 2014, 6, 7274. doi: 10.1039/c4nr00505h
-
[18]
(18) Usha, N.; Sivakumar, R.; Sanjeeviraja, C. Mat. Sci. Semicon. Proc. 2015, 30, 31. doi: 10.1016/j.mssp.2014.09.043
-
[19]
(19) Ou, J. Z.; Campbell, J. L.; Yao, D.; Wlodarski, W.; Kalantarzadeh, K. J. Phys. Chem. C 2011, 115, 10757. doi: 10.1021/jp202123a
-
[20]
(20) de Paiva, J. B., Jr.; Monteiro, W. R.; Zacharias, M. A.; Rodrigues, J. A. J.; Cortez, G. G. Braz. J. Chem. Eng. 2006, 4, 517.
-
[21]
(21) Botto, I. L.; Cabello, C. I.; Thomas, H. J. Mater. Chem. Phys.1997, 47, 37. doi: 10.1016/S0254-0584(97)80025-9
-
[22]
(22) Guan, J. Q.; Xu, C.; Wang, Z. Q.; Yang, Y.; Liu, Bo. Catal. Lett. 2008, 124, 428. doi: 10.1007/s10562-008-9496-3
-
[23]
(23) Xu, B. L.; Fan, Y. N.; Liu, L.; Lin, M.; Chen, Y. Science in China (Series B) 2002, 32, 235. [许波连, 范以宁, 刘浏, 林明, 陈懿. 中国科学(B 辑), 2002, 32, 235.]
-
[24]
(24) Fan, F. Q.; Meng, M.; Tian, Y.; Zheng, L. R.; Zhang, J.; Hu, T.D. Acta Phys.-Chim. Sin. 2015, 31, 1761. [范丰奇, 孟明, 田野, 郑黎荣, 张静, 胡天斗. 物理化学学报, 2015, 31, 1761.] doi: 10.3866/PKU.WHXB201507291
-
[25]
(25) Sanderson, R. T. J. Chem. Educ. 1988, 65, 112. doi: 10.1021/ed065p112
-
[26]
(26) Beccaria, A. M.; Poggi, G.; Castello, G. Brit. Corros. J. 1995, 30, 283. doi: 10.1179/000705995798113709
-
[27]
(27) Wang, Q. Q.; Lin, B. Z.; Xu, B. H.; Li, X. L.; Chen, Z. J.; Pian, X. T. Microporous Mesoporous Mat. 2010, 130, 344. doi: 10.1016/j.micromeso.2009.11.033
-
[28]
(28) Xu, Y.; Schoonen, M. A. A. Am. Mineral. 2000, 85, 543. doi: 10.2138/am-2000-0416
-
[1]
-
-
-
[1]
Yuanqing Wang , Yusong Pan , Hongwu Zhu , Yanlei Xiang , Rong Han , Run Huang , Chao Du , Chengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050
-
[2]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005
-
[3]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[4]
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
-
[5]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013
-
[6]
Mingjie Lei , Wenting Hu , Kexin Lin , Xiujuan Sun , Haoshen Zhang , Ye Qian , Tongyue Kang , Xiulin Wu , Hailong Liao , Yuan Pan , Yuwei Zhang , Diye Wei , Ping Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083
-
[7]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[8]
Ruolin CHENG , Yue WANG , Xiyao NIU , Huagen LIANG , Ling LIU , Shijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424
-
[9]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[10]
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
-
[11]
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
-
[12]
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
-
[13]
Jiatong Li , Linlin Zhang , Peng Huang , Chengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970
-
[14]
Jia Wang , Qing Qin , Zhe Wang , Xuhao Zhao , Yunfei Chen , Liqiang Hou , Shangguo Liu , Xien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044
-
[15]
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
-
[16]
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
-
[17]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[18]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005
-
[19]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030
-
[20]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(456)
- HTML views(42)