Citation: WANG Li, SHI Hong, LIU Hui-Hui, SHAO Xiang, WU Kai. STM Study of CaO(001) Model Catalytic Thin Films Prepared on Mo(001) Surface[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 183-194. doi: 10.3866/PKU.WHXB201512113 shu

STM Study of CaO(001) Model Catalytic Thin Films Prepared on Mo(001) Surface

  • Corresponding author: SHAO Xiang,  WU Kai, 
  • Received Date: 15 October 2015
    Available Online: 11 December 2015

    Fund Project: 国家自然科学基金(21333001) (21333001)国家重点基础研究发展规划项目(973)(2014CB932700) (973)(2014CB932700)

  • Single crystalline oxide thin film has been delegated as an important approach to studying oxide materials. The related researches are at the frontier of model catalysis. In this review, we try to summarize what has been researched so far around the CaO(001) films, which have been recently developed in Prof. Hajo Freund's group at the Fritz-Haber Institute. The revealed properties of CaO films have displayed the common characteristics of supported ultrathin oxide films, which are sensitively dependent on the interface structures and film thicknesses, but they have also shown new aspects such as the novel tuning effects from self-doping by substrate ions. Low-temperature scanning tunneling microscopy (LT-STM) has been applied through all detailed studies, including the characterizations of atomic structure and electronic properties, recognition of various defects and charge analyses of various surface species. The microscopic information received from delicate STM measurements provides atomic views of the effective factors involved in manipulating the oxide surface properties. With the aid of theoretical calculations, deep insights of the doping mechanism and selection principles of the dopants are achieved, which should largely assist the design of new catalysts.
  • 加载中
    1. [1]

      (1) Pacchioni, G.; Freund, H. J. Chem. Rev. 2013, 113, 4035. doi: 10.1021/cr3002017

    2. [2]

      (2) Campbell, C. T.; Sauer, J. Chem. Rev. 2013, 113, 3859. doi: 10.1021/cr4002337

    3. [3]

      (3) Surnev, S.; Fortunelli, A.; Netzer, F. P. Chem. Rev. 2013, 113, 4314. doi: 10.1021/cr300307n

    4. [4]

      (4) Reddy, E. P.; Smirnoiotis, P. G. J. Phys. Chem. B 2004, 108, 7794. doi: 10.1021/jp031245b

    5. [5]

      (5) Snis, A.; Panas, I. Surf. Sci. 1998, 412/413, 477.

    6. [6]

      (6) Livraghi, S.; Paganini, M. C.; Giamello, E. J. Mol. Catal. A: Chem. 2010, 322, 39. doi: 10.1016/j.molcata.2010.02.012

    7. [7]

      (7) Lee, Y. C.; Montano, P. A. Surf. Sci. 1984, 143, 423. doi: 10.1016/0039-6028(84)90551-X

    8. [8]

      (8) Kawashima, A.; Matsubara, K.; Honda, K. Bioresource Technol. 2009, 100, 696. doi: 10.1016/j.biortech.2008.06.049

    9. [9]

      (9) Alonso, D. M.; Mariscal, R.; Granados, M. L.; Maireles-Torres, P. Catal. Today 2009, 143, 167. doi: 10.1016/j.cattod. 2008.09.021

    10. [10]

      (10) Najafpour, M. M.; Ehrenberg, T.; Wiechen, M.; Kurz, P. Angew. Chem. Int. Edit. 2010, 49, 2233. doi: 10.1002/anie.v49:12

    11. [11]

      (11) Liu, X. J.; He, H. Y.; Wang, Y. J.; Zhu, S. L.; Piao, X. L. Fuel 2008, 87, 216. doi: 10.1016/j.fuel.2007.04.013

    12. [12]

      (12) Granados, M. L.; Alonso, D. M.; Alba-Rubio, A. C.; Mariscal, R.; Ojeda, M.; Brettes, P. Energy & Fuels 2009, 23, 2259.

    13. [13]

      (13) Doytl, C. S.; Kendelewicz, T.; Carrier, X.; Brown, G. E., Jr. Surf. Rev. Lett. 1999, 6, 1247. doi: 10.1142/S0218625X99001402

    14. [14]

      (14) Liu, P.; Kendelewicz, T.; Brown, G. E., Jr.; Parks, G. A.; Pianettaet, P. Surf. Sci. 1998, 416, 326. doi: 10.1016/S0039-6028(98)00637-2

    15. [15]

      (15) Kadossov, E. B.; Burghaus, U. J. Phys. Chem. C 2008, 112, 7390. doi: 10.1021/jp800755q

    16. [16]

      (16) Kadossov, E. B.; Burghaus, U. Chem. Commun. 2008, 4073.

    17. [17]

      (17) Norenberg, H.; Harding, J. H. Phys. Rev. B 1999, 59, 9842. doi: 10.1103/PhysRevB.59.9842

    18. [18]

      (18) Ochs, D.; Braun, B.; Maus-Friedrichs, W.; Kempter, V. Surf. Sci. 1998, 417, 406. doi: 10.1016/S0039-6028(98)00721-3

    19. [19]

      (19) Bebensee, F.; Voigts, F.; Maus-Friedrichs, W. Surf. Sci. 2008, 602, 1622. doi: 10.1016/j.susc.2008.02.011

    20. [20]

      (20) Losego, M. D.; Mita, S.; Collazo, R.; Sitar, Z.; Maria, J. P. J. Vac. Sci. Technol. B 2007, 25, 1029

    21. [21]

      (21) Iedema, M. J.; Kizhakvariam, N.; Cowin, J. P. J. Phys. Chem. B 1998, 102, 693. doi: 10.1021/jp973169g

    22. [22]

      (22) Nilius, N. Surf. Sci. Rep. 2009, 64, 595. doi: 10.1016/j.surfrep. 2009.07.004

    23. [23]

      (23) Shao, X.; Myrach, P.; Nilius, N.; Freund, H. J.; Martinez, U.; Prada, S.; Giordano, L.; Pacchioni, G. Phys. Rev. B 2011, 83, 245407. doi: 10.1103/PhysRevB.83.245407

    24. [24]

      (24) Shao, X.; Myrach, P.; Nilius, N.; Freund, H. J. J. Phys. Chem. C 2011, 115, 8784. doi: 10.1021/jp201852x

    25. [25]

      (25) Gonchara, A.; Rissea, T. Molecular Phys. 2013, 111, 2708.

    26. [26]

      (26) Benia, H. M.; Myrach, P.; Nilius, N.; Freund, H. J. Surf. Sci. 2010, 604, 435. doi: 10.1016/j.susc.2009.12.011

    27. [27]

      (27) Cui, Y.; Pan, Y.; Pascua, L.; Qiu, H. S.; Stiehler, C.; Kuhlenbeck, H.; Nilius, N.; Freund, H. J. Phys. Rev. B 2015, 91, 035418.

    28. [28]

      (28) Pal, J.; Smerieri1, M.; Celasco, E.; Savio1, L.; Vattuone, L.; Roccaet, M. Phys. Rev. Lett. 2014, 112, 126102. doi: 10.1103/PhysRevLett.112.126102

    29. [29]

      (29) Shao, X.; Nilius, N.; Freund, H. J. Phys. Rev. B 2012, 85, 115444. doi: 10.1103/PhysRevB.85.115444

    30. [30]

      (30) McFarland, E. W.; Metiu, H. Chem. Rev. 2013, 113, 4391. doi: 10.1021/cr300418s

    31. [31]

      (31) Cui, Y.; Shao, X.; Prada, S.; Giordano, L.; Pacchioni, G.; Freund, H. J.; Nilius, N. Phys. Chem. Chem. Phys. 2014, 16, 12764.

    32. [32]

      (32) Zheng, H.; Kroger, J.; Berndt, R. Phys. Rev. Lett. 2012, 108, 076801. doi: 10.1103/PhysRevLett.108.076801

    33. [33]

      (33) Zheng, H.; Weismann, A.; Berndt, R. Phys. Rev. Lett. 2013, 110, 226101. doi: 10.1103/PhysRevLett.110.226101

    34. [34]

      (34) Cui, Y.; Nilius, N.; Freund, H. J.; Prada, S.; Giordano, L.; Pacchioni, G. Phys. Rev. B 2013, 88, 205421. doi: 10.1103/PhysRevB.88.205421

    35. [35]

      (35) Shao, X.; Nilius, N.; Freund, H. J. J. Am. Chem. Soc. 2012, 134, 2532. doi: 10.1021/ja211396t

    36. [36]

      (36) Stavale, F.; Shao, X.; Nilius, N.; Freund, H. J.; Prada, S.; Giordano, L.; Pacchioni, G. J. Am. Chem. Soc. 2012, 134, 11380. doi: 10.1021/ja304497n

    37. [37]

      (37) Widmann, D.; Behm, R. J. Accounts Chem. Res. 2014, 47, 740. doi: 10.1021/ar400203e

    38. [38]

      (38) Sterrer, M.; Risse, T.; Heyde, M.; Rust, H. P.; Freund, H. J. Phys. Rev. Lett. 2007, 98, 206103. doi: 10.1103/PhysRevLett. 98.206103

    39. [39]

      (39) Sterrer, M.; Risse, T.; Martinez, U.; Giordano, L.; Heyde, M.; Rust, H. P.; Pacchioni, G.; Freund, H. J. Phys. Rev. Lett. 2007, 98, 096107. doi: 10.1103/PhysRevLett.98.096107

    40. [40]

      (40) Lin, X.; Yang, B.; Benia, H. M.; Myrach, P.; Yulikov, M.; Aumer, A.; Brown, M. A.; Sterrer, M.; Bondarchuk, O.; Kieseritzky, E.; Rocker, J.; Risse, T.; Gao, H. J.; Nilius, N.; Freund, H. J. J. Am. Chem. Soc. 2010, 132, 7745. doi: 10.1021/ja101188x

    41. [41]

      (41) Shao, X.; Prada, S.; Giordano, L.; Pacchioni, G.; Nilius, N.; Freund, H. J. Angew. Chem. Int. Edit. 2011, 50, 11525. doi: 10.1002/anie.v50.48

    42. [42]

      (42) Cui, Y.; Stiehler, C.; Nilius, N.; Freund, H. J. Phys. Rev. B 2015, 92, 075444. doi: 10.1103/PhysRevB.92.075444

    43. [43]

      (43) Frondelius, P.; Häkkinen, H.; Honkala, K. Angew. Chem. Int. Edit. 2010, 49, 7913. doi: 10.1002/anie.v49:43

    44. [44]

      (44) Calaza, F.; Stiehler, C.; Fujimori, Y.; Sterrer, M.; Beeg, S.; Ruiz-Oses, M.; Nilius, N.; Heyde, M.; Parviainen, T.; Honkala, K.; Häkkinen, H.; Freund, H. J. Angew. Chem. Int. Edit. 2015, 54, 12484. doi: 10.1002/anie.201501420

    45. [45]

      (45) Cui, Y.; Huang, K.; Nilius, N.; Freund, H. J. Faraday Discuss. 2013, 162, 153. doi: 10.1039/c3fd20130a

    46. [46]

      (46) Shao, X.; Cui, Y.; Schneider, W. D.; Nilius, N.; Freund, H. J. J. Phys. Chem. C 2012, 116, 17980. doi: 10.1021/jp306328c

    47. [47]

      (47) Cui, Y.; Shao, X.; Baldofski, M.; Sauer, J.; Nilius, N.; Freund, H. J. Angew. Chem. Int. Edit. 2013, 52, 11385. doi: 10.1002/anie. v52.43

    48. [48]

      (48) Schwach, P.; Willinger, M. G.; Trunschke, A.; Schlögl, R. Angew. Chem. Int. Edit. 2013, 52, 11381. doi: 10.1002/anie. v52.43

    49. [49]

      (49) Shin, H. J.; Jung, J.; Motobayashi, K.; Yanagisawa, S.; Morikawa, Y.; Kim, Y.; Kawai, M. Nat. Mater. 2010, 9, 442. doi: 10.1038/nmat2740

    50. [50]

      (50) Dulub, O.; Meyer, B.; Diebold, U. Phys. Rev. Lett. 2005, 95, 136101. doi: 10.1103/PhysRevLett.95.136101

    51. [51]

      (51) Odelius, M. Phys. Rev. Lett. 1999, 82, 3919. doi: 10.1103/PhysRevLett.82.3919

    52. [52]

      (52) Brown, M.; Fujimori, Y.; Ringleb, F.; Shao, X.; Stavale, F.; Nilius, N.; Sterrer, M.; Freund, H. J. J. Am. Chem. Soc. 2011, 133, 11668.

    53. [53]

      (53) Zhao, X. H.; Shao, X.; Fujimori, Y.; Bhattacharya, S.; Ghiringhelli, L. M.; Freund, H. J.; Sterrer, M.; Nilius, N.; Levchenko, S. V. J. Phys. Chem. Lett. 2015, 6, 1204. doi: 10.1021/acs.jpclett.5b00223

    54. [54]

      (54) Yamada, T.; Tamamori, S.; Okuyama, H.; Aruga, T. Phys. Rev. Lett. 2006, 96, 036105. doi: 10.1103/PhysRevLett.96.036105

    55. [55]

      (55) He, Y. B.; Li, W. K.; Gong, X. Q.; Dulub, O.; Selloni, A.; Diebold, U. J. Phys. Chem. C 2009, 113, 10329. doi: 10.1021/jp903017x

    56. [56]

      (56) Chen, J.; Guo, J.; Meng, X. Z.; Peng, J. B.; Sheng, J. M.; Xu, L. M.; Jiang, Y.; Li, X. Z.; Wang, E. G. Nat. Commun. 2014, 5, 4056.

  • 加载中
    1. [1]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    2. [2]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    3. [3]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    4. [4]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    5. [5]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    6. [6]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    7. [7]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    8. [8]

      Yuan Chun Yongmei Liu Fuping Tian Hong Yuan Shu'e Song Wanchun Zhu Yunchao Li Zhongyun Wu Xiaokui Wang Yunshan Bai Li Wang Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053

    9. [9]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    10. [10]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    11. [11]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    12. [12]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    13. [13]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    14. [14]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    15. [15]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    16. [16]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    17. [17]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    18. [18]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    19. [19]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    20. [20]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

Metrics
  • PDF Downloads(0)
  • Abstract views(484)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return