Citation:
ZHU Qing-Gong, SUN Xiao-Fu, KANG Xin-Chen, MA Jun, QIAN Qing-Li, HAN Bu-Xing. Cu2S on Cu Foam as Highly Efficient Electrocatalyst for Reduction of CO2 to Formic Acid[J]. Acta Physico-Chimica Sinica,
;2016, 32(1): 261-266.
doi:
10.3866/PKU.WHXB201512101
-
The electrocatalytic reduction of CO2 to HCOOH is an interesting topic and the efficiency usually depends strongly on the materials of the electrodes. Herein, nanostructured Cu2S on Cu-foam was prepared by electro-deposition method and characterized by means of scanning electron microscope (SEM) and X-ray diffraction (XRD). The Cu2S/Cu-foam electrode was used for the first time in the electrocatalytic reduction of CO2 to HCOOH, and acetonitrile (MeCN) with 0.5 mol·L-1 1-butyl-3- methylimidazolium tetrafluoroborate (BmimBF4) was used as the electrolyte. It was demonstrated that the electrolysis system was very efficient for the electrochemical reaction, and faradaic efficiency of HCOOH (FEHCOOH) and reduction current density could reach 85% and 5.3 mA·cm-2, respectively.
-
Keywords:
- Copper(I) sulfide,
- Copper foam,
- Formic acid,
- Electrochemistry,
- CO2 reduction
-
-
-
[1]
(1) He, M. Y.; Sun, Y. H.; Han, B. X. Angew. Chem. Int. Edit. 2013, 52, 9620. doi: 10.1002/anie.201209384
-
[2]
(2) Wang, W.; Wang, S. P.; Ma, X. B.; Gong, J. L. Chem. Soc. Rev. 2011, 40, 3703. doi: 10.1039/C1CS15008A
-
[3]
(3) Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G. O.; Pérez-Ramírez, Z. Energy Environ. Sci. 2013, 6, 3112. doi: 10.1039/C3EE41272E
-
[4]
(4) Whipple, D. T.; Kenis, P. J. A. J. Phys. Chem. Lett. 2010, 1, 3451. doi: 10.1021/jz1012627
-
[5]
(5) Zhao, C. C.; He, X. M.; Wang, L.; Guo, J. W. Chem. Ind. En. Pro. (China) 2013, 32, 373. [赵晨辰, 何向明, 王莉, 郭建伟. 化工进展, 2013, 32, 373.]
-
[6]
(6) Zhou, F.; Liu, S. M.; Alshammari, A. S.; Deng, Y. Q. Chin. Sci. Bull. 2015, 60, 2466. [周峰, 刘士民, Alshammari, A. S., 邓友全. 科学通报, 2015, 60, 2466.] doi: 10.1360/N972015-00339
-
[7]
(7) Qiao, J. L.; Liu, Y. Y.; Hong, F.; Zhang, J. J. Chem. Soc. Rev. 2014, 43, 631. doi: 10.1039/C3CS60323G
-
[8]
(8) Rosen, B. A.; Salehi-khojin, A.; Thorson, M. R.; Zhu, W.; Whipple, D. T.; Kenis, P. J. A.; Masel, R. I. Science 2011, 334, 643. doi: 10.1126/science.1209786
-
[9]
(9) Agarwal, A. S.; Zhai, Y. M.; Hill, D.; Sridhar, N. ChemSusChem 2011, 4, 1301. doi: 10.1002/cssc.201100220
-
[10]
(10) Chen, Y. H.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134, 1986. doi: 10.1021/ja2108799
-
[11]
(11) Zhang, S.; Kang, P.; Meyer, T. J. J. Am. Chem. Soc. 2014, 136, 1734. doi: 10.1021/ja4113885
-
[12]
(12) Kang, P.; Zhang, S.; Meer, T. J.; Brookhart, M. Angew. Chem. Int. Edit. 2014, 53, 8709. doi: 10.1002/anie.201310722
-
[13]
(13) Watkins, J. D.; Bocarsly, A. B. ChemSusChem 2014, 7, 284. doi: 10.1002/cssc.201300659
-
[14]
(14) Li, C. W.; Kanan, M. W. J. Am. Chem. Soc. 2012, 34, 7231. doi: 10.1021/ja3010978
-
[15]
(15) Kortlever, R.; Peter, I.; Koper, S.; Koper, M. T. M. ACS Catal. 2015, 5, 3916. doi: 10.1021/acscatal.5b00602
-
[16]
(16) Lu, X.; Leung, D. Y. C.; Wang, H. Z.; Leung, M. K. H.; Xuan, J. ChemElectroChem 2014, 1, 836. doi: 10.1002/celc.201300206
-
[17]
(17) Huan, T. N.; Andreiadis, E.; Heidkamp, J.; Simon, P.; Derat, E.; Cobo, S.; Royal, G.; Berqmann, A.; Strasser, P.; Dau, H.; Artero, V.; Fontecave, M. J. Mater. Chem. A 2015, 3, 3901. doi: 10.1039/C4TA07022D
-
[18]
(18) Zhu, J.; Yu, X. C.; Wang, S. M.; Dong, W. W.; Hu, H. L.; Fang, X. D.; Dai, S. Y. Acta. Phys. -Chim. Sin. 2013, 29, 533. [朱俊, 余学超, 王时茂, 董伟伟, 胡华林, 方晓东, 戴松元. 物理化学学报, 2013, 29, 533.] doi: 10.3866/PKU.WHXB201212124
-
[19]
(19) Chung, J. S.; Sohn, H. J. J. Power Sources 2002, 108, 226. doi: 10.1016/S0378-7753(02)00024-1
-
[20]
(20) Lai, C. H.; Huang, K. W.; Cheng, J. H.; Lee, C. Y.; Hwang, B. J.; Chen, L. J. J. Mater. Chem. 2010, 20, 6638. doi: 10.1039/C0JM00434K
-
[21]
(21) Yu, X. C.; Zhu, J.; Liu, F.; Wei, J. F.; Hu, L. H.; Dai, S. Y. Sci. China Chem. 2013, 56, 977. doi: 10.1007/s11426-012-4810-8
-
[22]
(22) Ni, S. B.; Li, T. L.; Yang, X. L. Thin Solid Films 2012, 520, 6705. doi: 10.1016/j.tsf.2012.06.074
-
[23]
(23) Ni, S. B.; Lv, X. H.; Li, T.; Yang, X. L. Mater. Chem. Phys. 2013, 143, 349. doi: 10.1016/j.matchemphys.2013.09.008
-
[24]
(24) Kar, P.; Farsinezhad, S.; Zhang, X. J.; Shankar, K. Nanoscale 2014, 6, 14305. doi: 10.1039/C4NR05371K
-
[25]
(25) Sun, X. F.; Tian, Q. Q.; Xue, Z. M.; Zhang, Y. W.; Mu, T. C. RSC Adv. 2014, 4, 30282. doi: 10.1039/C4RA02594F
-
[26]
(26) Anuar, K.; Zainal, Z., Hussein, M. Z.; Saravanan, N.; Haslina, I. Sol. Energy Mater. Sol. Cells 2002, 73, 351. doi: 10.1016/S0927-0248(01)00219-7
-
[27]
(27) Ghahremaninezhad, A.; Asselin, E.; Dixon, D. G. J. Phys. Chem. C 2011, 115, 9320. doi: 10.1021/jp108283z
-
[28]
(28) Kang, X. C.; Zhu, Q. G.; Sun, X. F.; Hu, J. Y.; Zhang, J. L.; Liu, Z. M.; Han, B. X. Chem. Sci. 2016, doi: 10. 1039/c5sc03291a
-
[29]
(29) Ren, D.; Deng, Y. L.; Handoko, A. D.; Chen, C. S.; Malkhandi, S.; Yeo, B. S. ACS Catal. 2015, 5, 2814. doi: 10.1021/cs502128q
-
[30]
(30) Kas, R.; Kortlever, R.; Milbrat, A.; Koper, M. T. M.; Mul, G.; Baltrusaitis, J. Phys. Chem. Chem. Phys. 2014, 16, 12194. doi: 10.1039/C4CP01520G
-
[31]
(31) Chen, Y.; Davoisne, C.; Tarascon, J. M.; Guéry, C. J. Mater. Chem. 2012, 22, 5295. doi: 10.1039/C2JM16692E
-
[32]
(32) DiMeglio, J. L.; Rosenthal, J. J. Am. Chem. Soc. 2013, 135, 8789. doi: 10.1021/ja4033549
-
[33]
(33) Medina-Ramos, J.; DiMeglio, J. L.; Rosenthal, J. J. Am. Chem. Soc. 2014, 136, 8361. doi: 10.1021/ja501923g
-
[34]
(34) Lee, S.; Kim, D.; Lee, J. Angew. Chem. Int. Edit. 2015, 127, 14914. doi: 10.1002/ange.201505730
-
[35]
(35) Chen, Y.; Li, C. W.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134, 19969. doi: 10.10.1021/ja309317u
-
[1]
-
-
-
[1]
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
-
[2]
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
-
[3]
Yongjian Zhang , Fangling Gao , Hong Yan , Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035
-
[4]
Zhaoyu Wen , Na Han , Yanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001
-
[5]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[6]
Shuhui Li , Rongxiuyuan Huang , Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028
-
[7]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[8]
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
-
[9]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[10]
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
-
[11]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[12]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[13]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[14]
Zixuan Zhao , Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040
-
[15]
Honghong Zhang , Zhen Wei , Derek Hao , Lin Jing , Yuxi Liu , Hongxing Dai , Weiqin Wei , Jiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073
-
[16]
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
-
[17]
Yifei Cheng , Jiahui Yang , Wei Shao , Wanqun Zhang , Wanqun Hu , Weiwei Li , Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033
-
[18]
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
-
[19]
Kuaibing Wang , Feifei Mao , Weihua Zhang , Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042
-
[20]
Zeqiu Chen , Limiao Cai , Jie Guan , Zhanyang Li , Hao Wang , Yaoguang Guo , Xingtao Xu , Likun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089
-
[1]
Metrics
- PDF Downloads(2)
- Abstract views(590)
- HTML views(64)