Citation: WANG Jun, LI Li, WEI Zi-Dong. Density Functional Theory Study of Oxygen Reduction Reaction on Different Types of N-Doped Graphene[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 321-328. doi: 10.3866/PKU.WHXB201512091 shu

Density Functional Theory Study of Oxygen Reduction Reaction on Different Types of N-Doped Graphene

  • Corresponding author: LI Li,  WEI Zi-Dong, 
  • Received Date: 20 October 2015
    Available Online: 9 December 2015

    Fund Project: 国家自然科学基金(21176271,21376284)资助项目 (21176271,21376284)

  • N-doped graphene has aroused much interest owing to its high activity and stability in oxygen reduction reaction (ORR) catalysis. However, the contribution of different types of N-doped graphene to ORR activity remains in dispute. Based on this issue, this paper conducts a comparative study of the ORR on graphitic N-doped graphene (GNG) and pyridinic N-doped grapheme (PNG). Band structure calculations show that the conductivity of GNG decreases as the nitrogen content increases; while that of PNG first increases to the highest at nitrogen content of 4.2% (atomic fraction), and then decreases. The conductivity of PNG is always higher than GNG when the doped nitrogen content is greater than 1.4%. Additionally, the free energy diagram of ORR shows that protonation of O2 is the potential-determining step among the whole ORR process, and the free energy change of this step on GNG is lower than on PNG, suggesting that GNG has higher ORR activity than PNG if their electron transport ability are the same. When the N content is lower than 2.8%, the conductivity difference between GNG and PNG is almost negligible, thus GNG with a higher capacity of O2 protonation exhibits better ORR activity than PNG. When the N content is greater than 2.8%, in this case, conductivity rather than free energy change will dominate, therefore the ORR on PNG will occur faster than on GNG because of its higher conductivity.
  • 加载中
    1. [1]

      (1) Wu, G.; Zelenay, P. Accounts Chem. Res. 2013, 46, 1878. doi: 10.1021/ar400011z

    2. [2]

      (2) Zhang Z. H.; Liu, J.; Gu, J. J.; Su, L.; Cheng, L. F. Energy Environ. Sci. 2014, 7, 2535. doi: 10.1039/c3ee43886d

    3. [3]

      (3) Shao, Y. Y.; Sui J. H.; Yin, G. P.; Gao, Y. Z. Appl. Catal. B-Environ. 2008, 79, 89. doi:10.1016/j.apcatb.2007.09.047

    4. [4]

      (4) Huo, R. J.; Jiang, W. J.; Xu, S. L.; Zhang, F. Z.; Hu, J. S. Nanoscale 2014, 6, 203. doi: 10.1039/c3nr05352k

    5. [5]

      (5) Ferreira, P. J.; la O′, G. J.; Shao-Horn, Y.; Morgan, D.; Makharia, R.; Kocha, S.; Gasteiger, H. A. J. Electrochem. Soc. 2005, 152, A2256. doi: 10.1149/1.2050347

    6. [6]

      (6) Li, L.; Wang, H. X.; Xu, B. Q.; Li, J. L.; Xing, W.; Mao, Z. Q. Acta Phys. -Chim. Sin. 2003, 19, 342. [李莉, 王恒秀, 徐伯庆, 李晋鲁, 邢魏, 毛宗强. 物理化学学报, 2003, 19, 342.] doi: 10.3866/PKU.WHXB20030413

    7. [7]

      (7) Lai, L. F.; Potts, J. R.; Zhan, D.; Wang, L.; Poh, C. K.; Tang, C.; Gong, H.; Shen, Z. X.; Lin, J. Y.; Ruoff, R. S. Energy Environ. Sci. 2012, 5, 7936. doi: 10.1039/c2ee21802j

    8. [8]

      (8) Zhang, C. Z.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y. L. Adv. Mater. 2013, 25, 4932. doi: 10.1002/adma.201301870

    9. [9]

      (9) Zhang, L. P.; Niu, J. B.; Li, M. T.; Xia, Z. H. J. Phys. Chem. C 2014, 118, 3545. doi: 10.1021/jp410501u

    10. [10]

      (10) Zhu, C. Z.; Dong, S. J. Nanoscale 2013, 5, 1753. doi: 10.1039/c2nr33839d

    11. [11]

      (11) Liu, Q.; Zhang, H. Y.; Zhong, H. W.; Zhang, S. M.; Chen, S. L. Electrochim. Acta 2012, 81, 313. doi: 10.1016/j.electacta.2012.07.022

    12. [12]

      (12) Ding, W.; Wei, Z. D.; Chen, S. G.; Qi, X. Q.; Yang, T.; Hu, J. S.; Wang, D.; Wan, L. J.; Alvi, S. F.; Li, L. Angew. Chem. 2013, 125, 1. doi: 10.1002/ange.201303924

    13. [13]

      (13) Soin, N.; Roy, S. S.; Roy, S.; Hazra, K. S.; Misra, D. S.; Lim, T. H.; Hetherington, C. J.; McLaughlin, J. A. J. Phys. Chem. C 2011, 115, 5366. doi:10.1021/jp110476m

    14. [14]

      (14) Usachov, D.; Vilkov, O.; Grüneis, A.; Haberer, D.; Fedorov, A.; Adamchuk, V. K.; Preobrajenski, A. B.; Dudin, P.; Barinov, A.; Oehzelt, M.; Laubschat, C.; Vyalikh, D. V. Nano Lett. 2011, 11, 5401. doi: 10.1021/nl2031037

    15. [15]

      (15) Lin, Z. Y.; Song, M. K.; Ding, Y.; Liu, Y.; Liu, M. L.; Wong, C. P. Phys. Chem. Chem. Phys. 2012, 14, 3381. doi: 10.1039/C2CP00032F

    16. [16]

      (16) Ikeda, T.; Boero, M.; Huang, S. F.; Terakura, K.; Oshima, M.; Ozaki, J. I. J. Phys. Chem. C 2008, 112, 14706. doi: 10.1021/jp806084d

    17. [17]

      (17) Boukhvalov, D. W.; Son, Y. W. Nanoscale 2012, 4, 417. doi: 10.1039/c1nr11307k

    18. [18]

      (18) Matter, P. H.; Zhang, L.; Ozkan, U. S. J. Catal. 2006, 238, 83. doi: 10.1016/j.jcat.2006.01.022

    19. [19]

      (19) Zhang, L.; Niu, J.; Dai, L.; Xia, Z. Langmuir 2012, 28, 7542. doi: 10.1021/la2043262

    20. [20]

      (20) Kresse, G. Phys. Rev. B 1996, 54, 11169. doi: 10.1103/PhysRevB.54.11169

    21. [21]

      (21) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.78.1396

    22. [22]

      (22) Yu, L.; Pan, X. L.; Cao, P.; Bao, X. H. J. Catal. 2011, 282, 183. doi: 10.1016/j.jcat.2011.06.015

    23. [23]

      (23) Saidi, W. A. J. Phys. Chem. Lett. 2013, 4, 4160. doi: 10.1021/jz402090d

    24. [24]

      (24) Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. J. Phys. Chem. B 2004, 108, 17886. doi: 10.1021/jp047349j

    25. [25]

      (25) Wang, Y.; Cheng, H. P. J. Phys. Chem. C 2013, 117, 2106. doi:10.1021/jp309203k

    26. [26]

      (26) Liang, W.; Chen, J. X.; Liu, Y. W.; Chen, S. L. ACS Catal. 2014, 4, 4170. doi: 10.1021/cs501170a

    27. [27]

      (27) Sha, Y.; Yu, T. H.; Liu, Y.; Merinov, B. V.; Goddard, W. A. J. Phys. Chem. Lett. 2010, 1, 856. doi: 10.1021/jz9003153

    28. [28]

      (28) Schiros, T.; Nordlund, D.; Pálová, L.; Prezzi, D.; Zhao, L. Y.; Kim, K. S.; Wurstbauer, U.; Gutiérrez, C.; Delongchamp, D.; Jaye, C.; Fischer, D.; Ogasawara, H.; Pettersson, L. G. M.; Reichman, D. R.; Kim, P.; Hybertsen, M. S.; Pasupathy, A. N. Nano Lett. 2012, 12, 4025. doi: 10.1021/nl301409h

    29. [29]

      (29) Jafri, S. H. M.; Carva, K.; Widenkvist, E.; Blom, T.; Sanyal, B.; Fransson, J.; Eriksson, O.; Jansson, U.; Grennberg, H.; Karis, O.; Quinlan, R. A. J. Phys. D: Appl. Phys. 2010, 43, 1. doi:10.1088/0022-3727/43/4/045404

    30. [30]

      (30) Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Angew. Chem. Int. Edit. 2012, 51, 11496. doi: 10.1002/anie.201206720

    31. [31]

      (31) Sun, J.; Fang, Y. H.; Liu, Z. P. Phys. Chem. Chem. Phys. 2014, 27, 13733. doi: 10.1039/c4cp00037d

    32. [32]

      (32) Koper, M. T. M. J. Solid State Electrochem. 2012, 17, 339. doi: 10.1007/s10008-012-1918-x

    33. [33]

      (33) Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. J. Am. Chem. Soc . 2014, 136, 4394. doi: org/10.1021/ja500432h

    34. [34]

      (34) Niwa, H.; Horiba, K.; Harada, Y.; Oshima, M.; Ikeda, T.; Terakura, K.; Ozaki, J. I.; Miyata, S. J. Power Sources 2009, 187, 93. doi: 10.1016/j.jpowsour.2008.10.064

    35. [35]

      (35) Geng, D. S.; Chen, Y.; Chen, Y. G.; Li, Y. L.; Li, R. Y.; Sun, X. L.; Ye, S. Y.; Knights, S. Energy Environ. Sci. 2011, 4, 760. doi: 10.1039/c0ee00326c

    36. [36]

      (36) Rao, C. V.; Cabrera, C. R.; Ishikawa, Y. J. Phys. Chem. Lett. 2010, 1, 2622. doi: 10.1021/jz100971v

  • 加载中
    1. [1]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Yachao HUANGChuanwang ZENGGuiyong LIUJinming ZENGChao LIUXiaopeng QI . Oxygen vacancies and phosphorus doping enhanced metal-organic framework derived nitrogen-doped carbon-coated Co3O4 bifunctional electrocatalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2251-2260. doi: 10.11862/CJIC.20250133

    5. [5]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    6. [6]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    7. [7]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    8. [8]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    9. [9]

      Hailang JIAYujie LUPengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021

    10. [10]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    13. [13]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    14. [14]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    15. [15]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    16. [16]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    17. [17]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    18. [18]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    19. [19]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    20. [20]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

Metrics
  • PDF Downloads(0)
  • Abstract views(949)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return