Citation: ZHANG Pei-Zhi, YE Mei-Jun, HU Wei-Lian, WU Jun. Kinetics of Acid-Catalyzed Smiles Rearrangement of 2,6-Dimethoxy-2-pyrimidinyloxy-N-arylbenzylamine Derivatives[J]. Acta Physico-Chimica Sinica, ;2016, 32(2): 422-428. doi: 10.3866/PKU.WHXB201512082 shu

Kinetics of Acid-Catalyzed Smiles Rearrangement of 2,6-Dimethoxy-2-pyrimidinyloxy-N-arylbenzylamine Derivatives

  • Corresponding author: ZHANG Pei-Zhi,  WU Jun, 
  • Received Date: 24 August 2015
    Available Online: 7 December 2015

    Fund Project: 国家自然科学基金(31471807) (31471807)公益性行业(农业)科研专项(201403030)资助 (农业)科研专项(201403030)

  • The kinetics of the acid-catalyzed Smiles rearrangement reactions of 2,6-dimethoxy-2-pyrimidinyloxy-N-arylbenzylamine derivatives was investigated. The effects of initial concentrations of hydrochloric acid, solvent, temperature, and substituent on reaction rates were examined. The results show that the rates increase with an increase in the initial concentration of hydrochloric acid. The reactivity order is CH3OH > C2H5OH > CH3SOCH3 > CH3CN in a single solvent, but rates markedly increase in mixed CH3OH/H2O (1:1, V/V) and the apparent reaction rate constant (kobs) is 5.27 times that of methanol. The rates for the derivatives are found to increase with an increase in temperature at 25-45 ℃, and no significant differences in activation energy (73.99-76.92 kJ·mol-1), activation enthalpy (71.57-74.38 kJ·mol-1), and Gibbs free energy (81.51-85.77 kJ·mol-1) are observed between them, except that there is difference in activation entropy (-24.38 --47.11 J·K-1·mol-1). There is a good linear relationship between substituents and the apparent reaction rate constants, and it is speculated that electron-withdrawing groups in the benzene ring will increase the reaction rates. A relevant reaction mechanism is suggested.
  • 加载中
    1. [1]

      (1) Liu, S. H.; Hu, Y.; Qian, P. F.; Hu, Y.W.; Ao, G. Z.; Chen, S.H.; Zhang, S. L.; Zhang, Y. N. Tetrahedron Lett. 2015, 56 (17), 2211. doi: 10.1016/j.tetlet.2015.03.062

    2. [2]

      (2) Nechepurenko, I. V.; Komarova, N. I.; Shernyukov, A. V.; Vasiliev, V. G.; Salakhutdinov, N. F. Tetrahedron Lett. 2014, 55(44), 6125. doi: 10.1016/j.tetlet.2014.09.059

    3. [3]

      (3) Xiao, Y. X.; Zhang, Z. C.; Chen, Y. B.; Shao, X. S.; Li, Z.; Xu, X. Y. Tetrahedron 2015, 71 (12), 1863. doi: 10.1016/j.tet.2015.01.059

    4. [4]

      (4) Kitching, M. O.; Hurst, T. E.; Snieckus, V. Angew. Chem. Int.Edit. 2012, 51 (12), 2925. doi: 10.1002/anie.201106786

    5. [5]

      (5) Yu, J. Z.; Wang, Y. T.; Zhang, P. Z.; Wu, J. Synlett 2013, 24(11), 1448. doi: 10.1055/s-00000083

    6. [6]

      (6) Yu, J. Z.; Zhang, P. Z.; Wu, J.; Shang, Z. C. Tetrahedron Lett.2013, 54 (24), 3167. doi: 10.1016/j.tetlet.2013.04.028

    7. [7]

      (7) Takahashi, T.; Maki, Y. Chem. Pharm. Bull. 1958, 6 (4), 369.

    8. [8]

      (8) Rodig, O. R.; Collier, R. E.; Schlatzer, R. K. J. Org. Chem.1964, 29 (9), 2652.

    9. [9]

      (9) Sunamoto, J.; Kondo, H.; Yanase, F.; Okamoto, H. B. Chem.Soc. Jpn. 1980, 53 (5), 1361.

    10. [10]

      (10) Lindberg, P.; Nordberg, P.; Alminger, T.; Brandstrom, A.; Wallmark, B. J. Med. Chem. 1986, 29 (8), 1327.

    11. [11]

      (11) Terauchi, H.; Tanitame, A.; Tada, K.; Nakamura, K.; Seto, Y.; Nishikawa, Y. J. Med. Chem. 1997, 40 (3), 313.

    12. [12]

      (12) Kuhler, T. C.; Swanson, M.; Christenson, B.; Klintenberg, A.C.; Lamm, B.; Fagerhag, J.; Gatti, R.; Olwegard-Halvarsson, M.; Shcherbuchin, V.; Elebring, T. J. Med. Chem. 2002, 45(19), 4282.

    13. [13]

      (13) Potashman, M. H.; Duggan, M. E. J. Med. Chem. 2009, 52 (5), 1231.

    14. [14]

      (14) Shin, J. M.; Cho, Y. M.; Sachs, G. J. Am. Chem. Soc. 2004, 126(25), 7800.

    15. [15]

      (15) Wu, J.; Cheng, J.; Lu, L. J. Arg. Food Chem. 2006, 54 (16), 5954. doi: 10.1021/jf061063p

    16. [16]

      (16) Wu, J.; Zhang, P. Z.; Lü , L.; Yu, Q. S.; Hu, X. R.; Gu, J. M.Chin. J. Struct. Chem. 2003, 22 (5), 613. [吴军, 张培志, 吕龙, 俞庆森, 胡秀荣, 顾建明. 结构化学, 2003, 22 (5), 613.]

    17. [17]

      (17) Wang, H. Y.; Zhang, X.; Guo, Y. L.; Tang, Q. H.; Lu, L. J. Am.Soc. Mass Spectrom. 2006, 17 (2), 253.

    18. [18]

      (18) Wang, H. Y.; Liao, Y. X.; Guo, Y. L.; Tang, Q. H.; Lu, L.Synlett 2005, 8, 1239.

    19. [19]

      (19) Wu, H. F.; Zhang, P. Z.; Wu, J. J. Zhejiang Univ. -Sci. B 2010, 11 (2), 94.

    20. [20]

      (20) Wei, Y. Y.; Li, J. Z. An Introduction to Chemical Reaction Mechanism; Science Press: Beijing, 2003; pp 37-77. [魏运洋, 李建著. 化学反应机理导论. 北京: 科学出版社, 2003: 37-77.]

    21. [21]

      (21) Richardson, D. E.; Yao, H. R.; Frank, K. M. Bennett, D. A.J. Am. Chem. Soc. 2000, 122 (8), 1729.

    22. [22]

      (22) Zou, J.W.; Shang, Z. C.; Yi, P. G.; Yu, Q. S.; Lin, R. S. Chin.J. Org. Chem. 2000, 20 (4), 537. [邹建卫, 商志才, 易平贵, 俞庆森, 林瑞森. 有机化学, 2000, 20 (4), 537.]

    23. [23]

      (23) Peng, M. J.; Lu, G. B.; Chen, W. H.; Chen, L. P.; Lü , J. Y. Acta Phys. -Chim. Sin. 2013, 29, 2095. [彭敏君, 路贵斌, 陈网桦, 陈利平, 吕家育. 物理化学学报, 2013, 29, 2095.] doi: 10.3866/PKU.WHXB201307122

    24. [24]

      (24) Casey, C. P.; Singer, S.W.; Powell, D. R.; Hayashi, R. K.; Kavana, M. J. Am. Chem. Soc. 2001, 123 (6), 1090.

    25. [25]

      (25) Zhu, X. Q.; Cao, L.; Liu, Y.; Yang, Y.; Lu, J. Y.; Wang, J. S.; Cheng, J. P. Chem. -Eur. J. 2003, 9 (16), 3937.

    26. [26]

      (26) Hansch, C.; Leo, A.; Taft, R.W. Chem. Rev. 1991, 91 (2), 165.

    27. [27]

      (27) Cao, C. T.; Wei, B. Y.; Cao, C. Z. Acta Phys. -Chim. Sin. 2015, 31, 204. [曹朝暾, 魏佰影, 曹晨忠. 物理化学学报, 2015, 31, 204.] doi: 10.3866/PKU.WHXB201412191

    28. [28]

      (28) Hassan, R. M.; Alaraifi, A.; Fawzy, A.; Zaafarany, I. A.; Khairou, K. S.; Ikeda, Y.; Takagi, H. D. J. Mol. Catal. AChem.2010, 332, 138.

  • 加载中
    1. [1]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    2. [2]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    3. [3]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    4. [4]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    5. [5]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    6. [6]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    7. [7]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    8. [8]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    9. [9]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    10. [10]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    11. [11]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    12. [12]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    13. [13]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    14. [14]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    15. [15]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    16. [16]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    17. [17]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    18. [18]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    19. [19]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    20. [20]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

Metrics
  • PDF Downloads(0)
  • Abstract views(428)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return