Citation:
GUO Qing, ZHOU Chuan-Yao, MA Zhi-Bo, REN Ze-Feng, FAN Hong-Jun, YANG Xue-Ming. Fundamental Processes in Surface Photocatalysis on TiO2[J]. Acta Physico-Chimica Sinica,
;2016, 32(1): 28-47.
doi:
10.3866/PKU.WHXB201512081
-
Because of the potential applications of TiO2 in photocatalytic hydrogen production and pollutant degradation, over the past few decades we have witnessed increasing interest in and effort toward developing TiO2-based photocatalysts, and improving the efficiency and exploring the reaction mechanisms at the atomic and molecular levels. Because surface science studies on single crystal surfaces under ultrahigh vacuum (UHV) conditions can provide fundamental insights into these important processes, both the thermo- and photo-chemistry on TiO2, especially on rutile TiO2(110) surfaces, have been extensively investigated with a variety of experimental and theoretical approaches. In this review, commencing with the properties of TiO2, we then focus on charge transport and trapping, and electron transfer dynamics. Next, we summarize recent progress made in the study of elementary photocatalytic chemistry of methanol on mainly rutile TiO2(110), as well as in some studies on rutile TiO2(011) and anatase TiO2(101). These studies have provided fundamental insights into surface photocatalysis and stimulated new investigations in this exciting area. The implications of these studies for the development of new photocatalysis models are also discussed.
-
-
-
[1]
(1) Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Chem. Rev. 2014, 114, 9919. doi: 10.1021/cr5001892
-
[2]
(2) Fujishima, A.; Zhang, X.; Tryk, D. A. Surf. Sci. Rep. 2008, 63, 515. doi: 10.1016/j.surfrep.2008.10.001
-
[3]
(3) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
-
[4]
(4) Nakata, K.; Fujishima, A. J. Photochem. Photobiol. C: Photochem. Rev. 2012, 13, 169. doi: 10.1016/j.jphotochemrev.2012.06.001
-
[5]
(5) Ma, Y.; Wang, X.; Jia, Y.; Chen, X.; Han, H.; Li, C. Chem. Rev. 2014, 114, 9987. doi: 10.1021/cr500008u
-
[6]
(6) Dambournet, D.; Belharouak, I.; Amine, K. Chem. Mater. 2010, 22, 1173. doi: 10.1021/cm902613h
-
[7]
(7) Nosheen, S.; Galasso, F. S.; Suib, S. L. Langmuir 2009, 25, 7623. doi: 10.1021/la9002719
-
[8]
(8) Diebold, U. Surf. Sci. Rep. 2003, 48, 53. doi: 10.1016/S0167-572900100-0
-
[9]
(9) Zhang, J.; Li, M. J.; Feng, Z. C.; Chen, J.; Li, C. J. Phys. Chem. B 2006, 110, 927. doi: 10.1021/jp0552473
-
[10]
(10) Su, W. G.; Zhang, J.; Feng, Z. C.; Chen, T.; Ying, P. L.; Li, C. J. Phys. Chem. C 2008, 112, 7710. doi: 10.1021/jp7118422
-
[11]
(11) Shi, J. Y.; Chen, J.; Feng, Z. C.; Chen, T.; Lian, Y. X.; Wang, X. L.; Li, C. J. Phys. Chem. C 2007, 111, 693. doi: 10.1021/jp065744z
-
[12]
(12) Zhang, J.; Xu, Q.; Li, M. J.; Feng, Z. C.; Li, C. J. Phys. Chem. C 2009, 113, 1698. doi: 10.1021/jp808013k
-
[13]
(13) Xu, Q. A.; Zhang, J.; Feng, Z. C.; Ma, Y.; Wang, X.; Li, C. Chem. -Asian J. 2010, 5, 2158. doi: 10.1002/asia.201000249
-
[14]
(14) Zhang, H. Z.; Banfield, J. F. J. Phys. Chem. B 2000, 104, 3481.
-
[15]
(15) Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Nature. 2008, 453, 638. doi: 10.1038/nature06964
-
[16]
(16) He, Y.; Dulub, O.; Cheng, H.; Selloni, A.; Diebold, U. Phys. Rev. Lett. 2009, 102, 106105. doi: 10.1103/PhysRevLett.102.106105
-
[17]
(17) Liang, Y.; Gan, S.; Chambers, S. A.; Eltman, E. I. Phys. Rev. B 2001, 63, 235402. doi: 10.1103/PhysRevB.63.235402
-
[18]
(18) Tachibana, Y.; Vayssieres, L.; Durrant, J. R. Nat. Photonics. 2012, 6, 511. doi: 10.1038/nphoton.2012.175
-
[19]
(19) Kapilashrami, M.; Zhang, Y.; Liu, Y. S.; Hagfeldt, A.; Guo, J. Chem. Rev. 2014, 114, 9662. doi: 10.1021/cr5000893
-
[20]
(20) Asahi, R.; Taga, Y.; Mannstadt, W.; Freeman, A. J. Phys. Rev. B 2000, 61, 7459. doi: 10.1103/PhysRevB.61.7459
-
[21]
(21) van de Krol, R.; Grätzel, M. Photoelectrochemical Hydrogen Production; Springer: Heidelberg, 2012; p 16.
-
[22]
(22) Henderson, M. A. Surf. Sci. Rep. 2011, 66, 185. doi: 10.1016/j.surfrep.2011.01.001
-
[23]
(23) Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69. doi: 10.1021/cr00033a004
-
[24]
(24) Berger, T.; Sterrer, M.; Diwald, O.; Knozinger, E. ChemPhysChem 2005, 6, 2104.
-
[25]
(25) Gundlach, L.; Felber, S.; Storck, W.; Galoppini, E.; Wei, Q.; Willig, F. Res. Chem. Intermed. 2005, 31, 39. doi: 10.1163/1568567053146841
-
[26]
(26) Gundlach, L.; Ernstorfer, R.; Willig, F. Phys. Rev. B 2006, 74, 035324. doi: 10.1103/PhysRevB.74.035324
-
[27]
(27) Nilius, N.; Ernst, N.; Freund, H. J. Chem. Phys. Lett. 2001, 349, 351. doi: 10.1016/S0009-261401232-5
-
[28]
(28) Yamada, Y.; Kanemitsu, Y. Phys. Rev. B 2010, 82, 113103. doi: 10.1103/PhysRevB.82.113103
-
[29]
(29) Yamada, Y.; Kanemitsu, Y. Phys. Status. Solidi. C 2011, 8, 104. doi: 10.1002/pssc.201000642
-
[30]
(30) Sporleder, D.; Wilson, D. P.; White, M. G. J. Phys. Chem. C 2009, 113, 13180. doi: 10.1021/jp901065j
-
[31]
(31) Diwald, O.; Thompson, T. L.; Goralski, E. G.; Walck, S. D.; Yates, J. T., Jr. J. Phys. Chem. B 2004, 108, 52. doi: 10.1021/jp030529t
-
[32]
(32) Turner, G. M.; Beard, M. C.; Schmuttenmaer, C. A. J. Phys. Chem. B 2002, 106, 11716. doi: 10.1021/jp025844e
-
[33]
(33) Grela, M. A.; Brusa, M. A.; Colussi, A. J. J. Phys. Chem. B 1997, 101, 10986. doi: 10.1021/jp972172x
-
[34]
(34) Grela, M. A.; Colussi, A. J. J. Phys. Chem. B 1999, 103, 2614. doi: 10.1021/jp9829492
-
[35]
(35) Grela, M. A.; Brusa, M. A.; Colussi, A. J. J. Phys. Chem. B 1999, 103, 6400. doi: 10.1021/jp990952v
-
[36]
(36) Morishita, T.; Hibara, A.; Sawada, T.; Tsuyumoto, I. J. Phys. Chem. B 1999, 103, 5984. doi: 10.1021/jp984729u
-
[37]
(37) Bahnemann, D. W.; Hilgendorff, M.; Memming, R. J. Phys. Chem. B 1997, 101, 4265. doi: 10.1021/jp9639915
-
[38]
(38) Yoshihara, T.; Katoh, R.; Furube, A.; Tamaki, Y.; Murai, M.; Hara, K.; Murata, S.; Arakawa, H.; Tachiya, M. J. Phys. Chem. B 2004, 108, 3817.
-
[39]
(39) Tamaki, Y.; Furube, A.; Murai, M.; Hara, K.; Katoh, R.; Tachiya, M. J. Am. Chem. Soc. 2006, 128, 416. doi: 10.1021/ja055866p
-
[40]
(40) Tamaki, Y.; Furube, A.; Murai, M.; Hara, K.; Katoh, R.; Tachiya, M. Phys. Chem. Chem. Phys. 2007, 9, 1453. doi: 10.1039/b617552j
-
[41]
(41) Nakaoka, Y.; Nosaka, Y. J. Photochem. Photobiol. A 1997, 110, 299. doi: 10.1016/S1010-603000208-6
-
[42]
(42) Jenkins, C. A.; Murphy, D. M. J. Phys. Chem. B 1999, 103, 101.
-
[43]
(43) Ganduglia-Pirovano, M. V.; Hofmann, A.; Sauer, J. Surf. Sci. Rep. 2007, 62, 219. doi: 10.1016/j.surfrep.2007.03.002
-
[44]
(44) Kowalski, P. M.; Camellone, M. F.; Nair, N. N.; Meyer, B.; Marx, D. Phys. Rev. Lett. 2010, 105, 146405. doi: 10.1103/PhysRevLett.105.146405
-
[45]
(45) Qu, Z. W.; Kroes, G. J. J. Phys. Chem. B 2006, 110, 8998. doi: 10.1021/jp056607p
-
[46]
(46) Miyagi, T.; Kamei, M.; Mitsuhashi, T.; Ishigaki, T.; Yamazaki, A. Chem. Phys. Lett. 2004, 390, 399. doi: 10.1016/j.cplett.2004.04.042
-
[47]
(47) Kamei, M.; Miyagi, T.; Ishigaki, T. Chem. Phys. Lett. 2005, 407, 209. doi: 10.1016/j.cplett.2005.03.075
-
[48]
(48) Planelles, J.; Movilla, J. L. Phys. Rev. B 2006, 73, 235350. doi: 10.1103/PhysRevB.73.235350
-
[49]
(49) Deskins, N. A.; Dupuis, M. Phys. Rev. B 2007, 75, 195212. doi: 10.1103/PhysRevB.75.195212
-
[50]
(50) Agrell, H. G.; Boschloo, G.; Hagfeldt, A. J. Phys. Chem. B 2004, 108, 12388. doi: 10.1021/jp037119p
-
[51]
(51) Mora-Sero, I.; Bisquert, J. Nano Lett. 2003, 3, 945. doi: 10.1021/nl0342390
-
[52]
(52) Barzykin, A. V.; Tachiya, M. J. Phys. Chem. B 2002, 106, 4356. doi: 10.1021/jp012957+
-
[53]
(53) Shkrob, I. A.; Sauer, M. C. J. Phys. Chem. B 2004, 108, 12497. doi: 10.1021/jp047736t
-
[54]
(54) Beermann, N.; Boschloo, G.; Hagfeldt, A. J. Photochem. Photobiol. A 2002, 152, 213. doi: 10.1016/S1010-603000236-8
-
[55]
(55) van de Lagemaat, J.; Frank, A. J. J. Phys. Chem. B 2001, 105, 11194. doi: 10.1021/jp0118468
-
[56]
(56) Komaguchi, K.; Nakano, H.; Araki, A.; Harima, Y. Chem. Phys. Lett. 2006, 428, 338. doi: 10.1016/j.cplett.2006.07.003
-
[57]
(57) Peiro, A. M.; Colombo, C.; Doyle, G.; Nelson, J.; Mills, A.; Durrant, J. R. J. Phys. Chem. B 2006, 110, 23255. doi: 10.1021/jp064591c
-
[58]
(58) Takahashi, H.; Watanabe, R.; Miyauchi, Y.; Mizutani, G. J. Chem. Phys. 2011, 134, 154704. doi: 10.1063/1.3578178
-
[59]
(59) Kerisit, S.; Deskins, N. A.; Rosso, K. M.; Dupuis, M. J. Phys. Chem. C 2008, 112, 7678. doi: 10.1021/jp8007865
-
[60]
(60) Shapovalov, V.; Stefanovich, E. V.; Truong, T. N. Surf. Sci. 2002, 498, L103.
-
[61]
(61) Yang, X. J.; Tamai, N. Phys. Chem. Chem. Phys. 2001, 3, 3393. doi: 10.1039/b101721g
-
[62]
(62) Tamaki, Y.; Furube, A.; Katoh, R.; Murai, M.; Hara, K.; Arakawa, H.; Tachiya, M. C. R. Chim. 2006, 9, 268. doi: 10.1016/j.crci.2005.05.018
-
[63]
(63) Thompson, T. L.; Yates, J. T., Jr. J. Phys. Chem. B 2005, 109, 18230. doi: 10.1021/jp0530451
-
[64]
(64) Berger, T.; Sterrer, M.; Diwald, O.; Knozinger, E.; Panayotov, D.; Thompson, T. L.; Yates, J. T., Jr. J. Phys. Chem. B 2005, 109, 6061. doi: 10.1021/jp0404293
-
[65]
(65) Tang, H.; Levy, F.; Berger, H.; Schmid, P. E. Phys. Rev. B 1995, 52, 7771. doi: 10.1103/PhysRevB.52.7771
-
[66]
(66) Stevanovic, A.; Buettner, M.; Zhang, Z.; Yates, J. T., Jr. J. Am. Chem. Soc. 2012, 134, 324. doi: 10.1021/ja2072737
-
[67]
(67) Murakami, M.; Matsumoto, Y.; Nakajima, K.; Makino, T.; Segawa, Y.; Chikyow, T.; Ahmet, P.; Kawasaki, M.; Koinuma, H. Appl. Phys. Lett. 2001, 78, 2664. doi: 10.1063/1.1365412
-
[1]
-
-
-
[1]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[2]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067
-
[3]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[4]
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
-
[5]
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
-
[6]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[7]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[8]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
-
[9]
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
-
[10]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024
-
[11]
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ−壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081
-
[12]
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
-
[13]
Lewang Yuan , Yaoyao Peng , Zong-Jie Guan , Yu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086
-
[14]
Jingping Li , Suding Yan , Jiaxi Wu , Qiang Cheng , Kai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104
-
[15]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007
-
[16]
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
-
[17]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014
-
[18]
Yuanqing Wang , Yusong Pan , Hongwu Zhu , Yanlei Xiang , Rong Han , Run Huang , Chao Du , Chengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050
-
[19]
Peipei Sun , Jinyuan Zhang , Yanhua Song , Zhao Mo , Zhigang Chen , Hui Xu . Built-in Electric Fields Enhancing Photocarrier Separation and H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-0. doi: 10.3866/PKU.WHXB202311001
-
[20]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(627)
- HTML views(40)