Citation: WEI Hui-Yun, WANG Guo-Shuai, WU Hui-Jue, LUO Yan-Hong, LI Dong-Mei, MENG Qing-Bo. Progress in Quantum Dot-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 201-213. doi: 10.3866/PKU.WHXB201512031 shu

Progress in Quantum Dot-Sensitized Solar Cells

  • Corresponding author: LI Dong-Mei,  MENG Qing-Bo, 
  • Received Date: 24 October 2015
    Available Online: 3 December 2015

    Fund Project: 国家自然科学基金(91433205,51402348,51421002,21173260,11474333,91233202) (91433205,51402348,51421002,21173260,11474333,91233202)国家重点基础研究发展规划项目(973)(2012CB932903)资助 (973)(2012CB932903)

  • Quantum dot-sensitized solar cells (QDSCs) have attracted much attention in the past few years because of the advantages of quantum dots (QDs), including low cost, easy fabrication, size-dependence bandgap, and multiple exciton generation (MEG). The properties of QD sensitizers influence the performance of QDSCs, such as their photoelectric characteristics, preparation methods, surface defects, chemical stability, and their sensitization towards TiO2 photoanodes. This review demonstrates the development of QD sensitizers, including narrow bandgap binary QDs, ternary or quaternary alloyed QDs, and Type-II core-shell QDs, especially the preparation methods of colloidal QDs. Furthermore, the deposition and sensitization methods of QDs are introduced in detail, particularly bifunctional-assisted self-assembly deposition. Meanwhile, methods to improve electron injection efficiency and reduce charge recombination are also summarized. Finally, a brief introduction is provided to the development of electrolytes and counter electrodes in QDSCs.
  • 加载中
    1. [1]

      (1) Gorer, S.; Hodes, G. J. Phys. Chem. 1994, 98, 5338. doi: 10.1021/j100071a026

    2. [2]

      (2) Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Chem. Mater. 2003, 15, 2854. doi: 10.1021/cm034081k

    3. [3]

      (3) Schaller, R. D.; Agranovich, V. M.; Klimov, V. I. Nat. Phys. 2005, 1, 189. doi: 10.1038/nphys151

    4. [4]

      (4) Kamat, P. V. J. Phys. Chem. Lett. 2013, 4, 908. doi: 10.1021/jz400052e

    5. [5]

      (5) Bai, Y.; Mora-Sero, I.; Angelis, F. D.; Bisquert, J.; Wang, P. Chem. Rev. 2014, 114, 10095. doi: 10.1021/cr400606n

    6. [6]

      (6) Garey, G. H.; Abdelhady, A. L.; Ning, Z.; Thon, S. M.; Bakr, O. M.; Sargent, E. H. Chem. Rev. 2015, 115, 12732. doi: 10.1021/acs.chemrev.5b00063.

    7. [7]

      (7) Hodes, G. J. Phys. Chem. C 2008, 112, 17778. doi: 10.1021/jp803310s

    8. [8]

      (8) Piliego, C.; Protesescu, L.; Bisri, S. Z.; Kovalenko, M. V.; Loi, M. A. Energy Environ. Sci. 2013, 6, 3054. doi: 10.1039/c3ee41479e

    9. [9]

      (9) Vogel, R.; Hoyer, P.; Weller, H. J. Phys. Chem. 1994, 98, 3183. doi: 10.1021/j100063a022

    10. [10]

      (10) Zhao, K.; Pan, Z.; Mora-Sero, I.; Canovas, E.; Wang, H.; Song, Y.; Gong, X.; Wang, J.; Bonn, M.; Bisquert, J.; Zhong, X. J. Am. Chem. Soc. 2015, 137, 5602.

    11. [11]

      (11) Kim, J. Y.; Yang, J.; Yu, J. H.; Baek, W.; Lee, C. H.; Son, H. J.; Hyeon, T.; Ko, M. J. ACS Nano 2015, 9, 11286.

    12. [12]

      (12) Wei, H.; Wang, G.; Luo, Y.; Li, D.; Meng, Q. Electrochim. Acta 2015, 173, 156. doi: 10.1016/j.electacta.2015.05.052

    13. [13]

      (13) Mathew, S.; Yella, A.; Cao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M. Nat. Chem. 2014, 6, 242. doi: 10.1038/nchem.1861

    14. [14]

      (14) Shen, Q.; Kobayashi, J.; Diguna, L. J.; Toyoda, T. J. Appl. Phys. 2008, 103, 084304. doi: 10.1063/1.2903059

    15. [15]

      (15) Diguna, L. J.; Shen, Q.; Kobayashi, J.; Toyoda, T. Appl. Phys. Lett. 2007, 91, 023116. doi: 10.1063/1.2757130

    16. [16]

      (16) Toyoda, T.; Yindeesuk, W.; Okuno, T.; Akimoto, M.; Kamiyayama, K.; Hayase, S.; Shen, Q. RSC Adv. 2015, 5, 49623. doi: 10.1039/C5RA07092A

    17. [17]

      (17) Toyoda, T.; Oshikane, K.; Li, D.; Luo, Y.; Meng, Q.; Shen, Q. Appl. Phys. 2010, 108, 114304. doi: 10.1063/1.3517066

    18. [18]

      (18) Zhang, Q.; Guo, X.; Huang, X.; Huang, S.; Li, D.; Luo, Y.; Shen, Q.; Toyoda, T.; Meng, Q. Phys. Chem. Chem. Phys. 2011, 13, 4659. doi: 10.1039/c0cp02099k

    19. [19]

      (19) Lee, Y. L.; Lo, Y. S. Adv. Funct. Mater. 2009, 19, 604. doi: 10.1002/adfm.v19:4

    20. [20]

      (20) Xu, Y.; Wu, W.; Rao, H.; Chen, H.; Kuang, D.; Su, C. Nano Energy 2015, 11, 621. doi: 10.1016/j.nanoen.2014.11.045

    21. [21]

      (21) Bai, Y.; Han, C.; Chen, X.; Yu, H.; Zong, X.; Li, Z.; Wang, L. Nano Energy 2015, 13, 609. doi: 10.1016/j.nanoen.2015.04.002

    22. [22]

      (22) Pan, Z.; Zhang, H.; Cheng, K.; Hou, Y.; Hua, Y.; Zhong, X. ACS Nano 2012, 6, 3982. doi: 10.1021/nn300278z

    23. [23]

      (23) Sambur, J. B.; Novet, T.; Parkinson, B. A. Science 2010, 330, 63. doi: 10.1126/science.1191462

    24. [24]

      (24) Zhang, J.; Cao, J.; Church, C. P.; Miller, E. M.; Luther, J. M.; Klimov, V. I.; Beard, M. C. Nano Lett. 2014, 14, 6010. doi: 10.1021/nl503085v

    25. [25]

      (25) Semonin, O. E.; Luther, J. M.; Choi, S.; Chen, H. Y.; Gao, J.; Nozik, A. J. N.; Beard, M. C. Science 2011, 334, 1530. doi: 10.1126/science.1209845

    26. [26]

      (26) Luther, J. M.; Law, M.; Beard, M. C.; Song, Q.; Reese, M. Q.; Ellingson, R. J.; Nozik, A. J. Nano Lett. 2008, 8, 3488. doi: 10.1021/nl802476m

    27. [27]

      (27) Braga, A.; Gimenez, S.; Concina, I.; Vomiero, A.; Mora-Sero, I. J. Phys. Chem. Lett. 2011, 2, 454. doi: 10.1021/jz2000112

    28. [28]

      (28) González-Pedro, V.; Sima, C.; Marzari, G.; Boix, P. P.; Giménez, S.; Shen, Q.; Dittrich, T.; Mora-Seró, I. Phys. Chem. Chem. Phys. 2013, 15, 13835. doi: 10.1039/c3cp51651b

    29. [29]

      (29) Zhou, N.; Chen, G.; Zhang, X.; Cheng, L.; Luo, Y.; Li, D.; Meng, Q. Electrochem. Commun. 2012, 2, 454.

    30. [30]

      (30) Zhou, N.; Yang, Y.; Huang, X.; Wu, H.; Luo, Y.; Li, D.; Meng, Q. ChemSusChem 2013, 6, 687. doi: 10.1002/cssc.201200763

    31. [31]

      (31) Lee, J. W.; Son, D. Y.; Ahn, T. K.; Shin, H. W.; Kim, I. Y.; Hwang, S. J.; Ko, M. J.; Sul, S.; Han, H.; Park, N. G. Scientific Reports 2013, 3, 1050.

    32. [32]

      (32) Zhang, J.; Gao, J.; Church, C. P.; Miller, E. M.; Luther, J. M.; Klimov, V. I.; Beard, M. C. Nano Lett. 2014, 14, 6010. doi: 10.1021/nl503085v

    33. [33]

      (33) Rhee, J. H.; Chung, C. C.; Diau, E. W. G. NPG Asia Mater 2013, 5, e68.

    34. [34]

      (34) Bang, J. H.; Kamat, P. V. ACS Nano 2009, 3, 1467. doi: 10.1021/nn900324q

    35. [35]

      (35) Yu, P. R.; Zhu, K.; Norman, A. G.; Ferrere, S.; Frank, A. J.; Nozik, A. J. J. Phys. Chem. B 2006, 110, 25451. doi: 10.1021/jp064817b

    36. [36]

      (36) Laghumavarapu, R. B.; El-Emawy, M.; Nuntawong, N.; Moscho, A.; Lester, L. F.; Huffaker, D. L. Appl. Phys. Lett. 2007, 91, 243115. doi: 10.1063/1.2816904

    37. [37]

      (37) Guo, X. D.; Ma, B. B.; Wang, L. D.; Gao, R.; Dong, H. P.; Qiu, Y. Acta Phys. -Chim. Sin. 2013, 29, 1240. [郭旭东, 马蓓蓓, 王立铎, 高瑞, 董豪鹏, 邱勇. 物理化学学报, 2013, 29, 1240.] doi: 10.3866/PKU.WHXB201303261

    38. [38]

      (38) Li, T. L.; Lee, Y. L.; Teng, H. Energy Environ. Sci. 2012, 5, 5315. doi: 10.1039/C1EE02253A

    39. [39]

      (39) McDaniel, H.; Fuke, N.; Makarov, N. S.; Pietryga, J. M.; Klimov, V. I. Nat. Commun. 2013, 4, 2887.

    40. [40]

      (40) Bai, B.; Kou, D.; Zhou, W.; Zhou, Z.; Wu, S. Green Chem. 2015, 17, 4377. doi: 10.1039/C5GC01049G

    41. [41]

      (41) Kim, S.; Kang, M.; Kim, S.; Heo, J. H.; Noh, J. H.; Im, S. H.; Seok, S.; Kim, S. W. ACS Nano 2013, 7, 4756. doi: 10.1021/nn401274e

    42. [42]

      (42) McDaniel, H.; Fuke, N.; Pietryga, J. M.; Klimov, V. I. J. Phys. Chem. Lett. 2013, 4, 355. doi: 10.1021/jz302067r

    43. [43]

      (43) Pan, Z.; Zhao, K.; Wang, J.; Zhang, H.; Feng, Y.; Zhong, X. ACS Nano 2013, 7, 5215. doi: 10.1021/nn400947e

    44. [44]

      (44) Luo, J.; Wei, H.; Li, F.; Huang, Q.; Li, D.; Luo, Y.; Meng, Q. Chem. Commun. 2014, 50, 3464. doi: 10.1039/c3cc49335k

    45. [45]

      (45) Zhu, D. H.; Zhong, R.; Cao, Y.; Peng, Z. H.; Feng, A. X.; Xiang, W. D.; Zhao, J. L. Acta Phys. -Chim. Sin. 2014, 30, 1861. [朱德华, 钟蓉, 曹宇, 彭志辉, 冯爱新, 向卫东, 赵家龙. 物理化学学报, 2014, 30, 1861.] doi: 10.3866/PKU.WHXB201408044

    46. [46]

      (46) Li, T. L.; Lee, Y. L.; Teng, H. Energy Environ. Sci. 2012, 5, 5315. doi: 10.1039/C1EE02253A

    47. [47]

      (47) Pan, Z.; Mora-Sero, I.; Shen, Q.; Zhang, H.; Li, Y.; Zhao, K.; Wang, J.; Zhong, X.; Bisquert, J. J. Am. Chem. Soc. 2014, 136, 9203. doi: 10.1021/ja504310w

    48. [48]

      (48) Kim, S.; Kang, M.; Kim, S.; Heo, J. H.; Noh, J. H.; Im, S. H.; Seok, S. I.; Kim, S. W. ACS Nano 2013, 7, 4756.

    49. [49]

      (49) Luo, J.; Wei, H.; Huang, Q.; Hu, X.; Zhao, H.; Yu, R.; Li, D.; Luo, Y.; Meng, Q. Chem. Commun. 2013, 49, 3881.

    50. [50]

      (50) Jiao, S.; Shen, Q.; Mora-Sero, I.; Wang, J.; Pan, Z.; Zhao, K.; Kuga, Y.; Zhong, X.; Bisquert, J. ACS Nano 2015, 9, 908. doi: 10.1021/nn506638n

    51. [51]

      (51) Wang, J.; Mora-Sero, I.; Pan, Z.; Zhang, H.; Feng, Y.; Yang, G.; Zhong, X.; Bisquert, J. J. Am. Chem. Soc. 2013, 135, 15913. doi: 10.1021/ja4079804

    52. [52]

      (52) Sahasrabudhe, A.; Bhattacharyya, S. Chem. Mater. 2015, 27, 4848. doi: 10.1021/acs.chemmater.5b01731

    53. [53]

      (53) Itzhakov, S.; Shen, H.; Buhbut, S.; Lin, H.; Oron, D. J. Phys. Chem. C 2013, 117, 22203. doi: 10.1021/jp312190x

    54. [54]

      (54) Zhang, Q.; Chen, G.; Yang, Y.; Shen, X.; Zhang, Y.; Li, C.; Yu, R.; Luo, Y.; Li, D.; Meng, Q. Phys. Chem. Chem. Phys. 2012, 16, 6479.

    55. [55]

      (55) Park, J. H.; Kim, D. H.; Shin, S. S.; Han, H. S.; Lee, M. H.; Jung, H. S.; Noh, J. H.; Hong, K. S. Adv. Energy Mater. 2014, 4, 1300395.

    56. [56]

      (56) Lin, Y.; Meng, Y.; Tu, Y.; Zhang, X. Opt. Commun. 2015, 346, 64. doi: 10.1016/j.optcom.2015.02.031

    57. [57]

      (57) Xiao, J.; Huang, Q.; Xu, J.; Li, C.; Chen, G.; Luo, Y.; Li, D.; Meng, Q. J. Phys. Chem. C 2014, 118, 4007. doi: 10.1021/jp411922e

    58. [58]

      (58) Hossain, M. A.; Jennings, J. R.; Koh, Z. Y.; Wang, Q. ACS Nano 2011, 5, 3172. doi: 10.1021/nn200315b

    59. [59]

      (59) Hossain, M. A.; Koha, Z. Y.; Wang, Q. Phys. Chem. Chem. Phys. 2012, 14, 7367. doi: 10.1039/c2cp40551b

    60. [60]

      (60) Tian, J.; Lv, L.; Wang, X.; Fei, C.; Liu, X.; Zhao, Z.; Wang, Y.; Cao, G. J. Phys. Chem. C 2014, 118, 16611. doi: 10.1021/jp412525k

    61. [61]

      (61) Li, C.; Yang, L.; Xiao, J.; Wu, Y. C.; Sondergaard, M.; Luo, Y.; Li, D.; Meng, Q.; Iversen, B. B. Phys. Chem. Chem. Phys. 2013, 15, 8710. doi: 10.1039/c3cp50365h

    62. [62]

      (62) Zhu, Z.; Qiu, J.; Yan, K.; Yang, S. ACS Appl. Mater. Interfaces 2013, 5, 4000.

    63. [63]

      (63) Yan, K.; Zhang, L.; Qiu, J.; Qiu, Y.; Zhu, Z.; Wang, J.; Yang, S. J. Am. Chem. Soc. 2013, 135, 9531. doi: 10.1021/ja403756s

    64. [64]

      (64) Tian, J.; Lv, L.; Fei, C.; Wang, Y.; Liu, X.; Cao, G. J. Mater. Chem. A 2014, 2, 19653. doi: 10.1039/C4TA04534C

    65. [65]

      (65) Li, W. J.; Zhong, X. H. J. Phys. Chem. Lett. 2015, 6, 796. doi: 10.1021/acs.jpclett.5b00001

    66. [66]

      (66) Santra, P. K.; Nair, P. V.; Thomas, K. G.; Kamat, P. V. J. Phys. Chem. Lett. 2013, 4, 722. doi: 10.1021/jz400181m

    67. [67]

      (67) Yu, X.; Liao, J.; Qiu, K.; Kuang, D.; Su, C. ACS Nano 2011, 5, 9494. doi: 10.1021/nn203375g

    68. [68]

      (68) Li, W. J.; Zhong, X. H. Acta Phys. Sin. 2015, 64, 038806. [李文杰, 钟新华. 物理学报, 2015, 64, 038806.]

    69. [69]

      (69) Hu, X.; Zhang, Q.; Huang, X.; Li, D.; Luo, Y.; Meng, Q. J. Mater. Chem. 2011, 21, 15903. doi: 10.1039/c1jm12629f

    70. [70]

      (70) Li, W.; Pan, Z.; Zhong, X. J. Mater. Chem. A 2015, 3, 1649. doi: 10.1039/C4TA05134C

    71. [71]

      (71) Yang, J.; Oshima, T.; Yindeesuk, W.; Pan, Z.; Zhong, X.; Shen, Q. J. Mater. Chem. A 2014, 2, 20882. doi: 10.1039/C4TA04353G

    72. [72]

      (72) Gopi, C. V. V. M.; Venkata-Haritha, M.; Kim, S. K.; Kim, H. J. Nanoscale 2015, 7, 12552. doi: 10.1039/C5NR03291A

    73. [73]

      (73) Mu, L.; Liu, C.; Jia, J.; Zhou, X.; Lin, Y. J. Mater. Chem. A 2013, 1, 8353. doi: 10.1039/c3ta11780d

    74. [74]

      (74) Hod, I.; Zaban, A. Langmuir 2014, 30, 7264. doi: 10.1021/la403768j

    75. [75]

      (75) Roelofs, K. E.; Brennan, T. P.; Dominguez, J. C.; Bailie, C. D.; Margulis, G. Y.; Hoke, E. T.; McGehee, M. D.; Bent, S. F. J. Phys. Chem. C 2013, 117, 5584. doi: 10.1021/jp311846r

    76. [76]

      (76) Yu, K.; Lin, X.; Lu, G.; Wen, Z.; Yuan, C.; Chen, J. RSC Adv. 2012, 2, 7843. doi: 10.1039/c2ra20979a

    77. [77]

      (77) Chen, Z.; Peng, W.; Zhang, K.; Zhang, K.; Zhang, J.; Yang, X.; Numata, Y.; Han, L. J. Mater. Chem. A 2014, 2, 7004.

    78. [78]

      (78) Niu, G.; Li, N.; Wang, L.; Li, W.; Qiu, Y. Phys. Chem. Chem. Phys. 2014, 16, 18327. doi: 10.1039/C4CP02520B

    79. [79]

      (79) Huang, J.; Yuan, C.; Chen, H.; Sun, J.; Sun, L.; Ågren, H. ACS Appl. Mater. Interfaces 2014, 6, 18808. doi: 10.1021/am504536a

    80. [80]

      (80) Ning, Z.; Tian, H.; Yuan, C.; Fu, Y.; Sun, L.; Ågren, H. Chem. Eur. J. 2011, 17, 6330. doi: 10.1002/chem.201003527

    81. [81]

      (81) Li, L.; Yang, X.; Gao, J.; Tian, H.; Zhao, J.; Anders, H.; Sun, L. J. Am. Chem. Soc. 2011, 133, 8450.

    82. [82]

      (82) Ning, Z.; Yuan, C.; Tian, H.; Fu, Y.; Li, L.; Sun, L.; Ågren, H. J. Mater. Chem. 2012, 22, 6032. doi: 10.1039/c2jm15857d

    83. [83]

      (83) Shu, T. Chem. Engineer 2013, 4, 42. [舒婷. 化学工程师, 2013, 4, 42.]

    84. [84]

      (84) Yu, Z.; Zhang, Q.; Qin, D; Luo, Y; Li, D.; Shen, Q.; Toyoda, T.; Meng, Q. Electrochem. Commun. 2012, 12, 1776.

    85. [85]

      (85) Wang, S.; Zhang, Q.; Xu, Y.; Li, D.; Luo, Y.; Meng, Q. J. Power Sources 2013, 224, 152. doi: 10.1016/j.jpowsour. 2012.09.044

    86. [86]

      (86) Yang, Y.; Wang, W. J. Power Sources 2015, 285, 70.

    87. [87]

      (87) Liu, L.; Liu, C.; Fu, W.; Deng, L.; Zhong, H. ChemPhysChem doi: 10.1002/cphc.201500627.

    88. [88]

      (88) Yang, Y.; Zhu, L.; Sun, H.; Huang, X.; Luo, Y.; Li, D.; Meng, Q. ACS Appl. Mater. Interfaces 2012, 4, 6162. doi: 10.1021/am301787q

    89. [89]

      (89) Yang, Z.; Chen, C. Y.; Liu, C. W.; Chang, H. T. Chem. Commun. 2010, 46, 5485. doi: 10.1039/c0cc00642d

    90. [90]

      (90) Punnoose, D.; Kim, H. J.; Rao, S. S.; Kumar, CH. S. S. P. J. Elecreoanal. Chem. 2015, 750, 19. doi: 10.1016/j.jelechem.2015.05.003

    91. [91]

      (91) Kim, H. J.; Kim, D. J.; Rao, S. S.; Savariraj, A. D.; Soo-Kyoung, K.; Son, M. K.; Gopi, C. V. V. M.; Prabakar, K. Electrochim. Acta 2014, 127, 427. doi: 10.1016/j.electacta.2014.02.019

    92. [92]

      (92) Gopi, C. V. V. M.; Rao, S. S.; Soo-Kyoung, K.; Punnoose, D.; Kim, H. J. J. Power Sources 2015, 275, 547. doi: 10.1016/j.jpowsour.2014.11.038

    93. [93]

      (93) Zhang, X.; Huang, X.; Yang, Y.; Wang, S.; Gong, Y.; Luo, Y.; Li, D.; Meng, Q. ACS Appl. Mater. Interfaces 2013, 5, 5954. doi: 10.1021/am400268j

    94. [94]

      (94) Deng, M.; Huang, S.; Zhang, Q.; Li, D.; Luo, Y.; Meng, Q. Chem. Lett. 2010, 39, 1168. doi: 10.1246/cl.2010.1168

    95. [95]

      (95) Yang, Y.; Zhu, L.; Sun, H.; Huang, X.; Luo, Y.; Li, D.; Meng, Q. ACS Appl. Mater. Interfaces 2012, 4, 6162. doi: 10.1021/am301787q

    96. [96]

      (96) Li, D.; Cheng, L.; Zhang, Y.; Zhang, Q.; Huang, X.; Luo, Y.; Meng, Q. Sol. Energy Mater. Sol. Cells 2014, 120, 454. doi: 10.1016/j.solmat.2013.09.025

    97. [97]

      (97) Kim, H. J.; Myung-Sik, L.; Gopi, C. V. V. M.; Venkata-Haritha, M.; Rao, S. S.; Kim, S. K. Dalton Trans. 2015, 44, 11340. doi: 10.1039/C5DT01412C

    98. [98]

      (98) Sung, S. D.; Lim, I.; Kang, P.; Lee, C.; Lee, W. I. Chem. Commun. 2013, 49, 6054. doi: 10.1039/c3cc40754c

    99. [99]

      (99) Radich, J. G.; Dwyer, R.; Kamat, P. V. J. Phys. Chem. Lett. 2011, 2, 2453. doi: 10.1021/jz201064k

    100. [100]

      (100) Seol, M.; Youn, D. H.; Kim, J. Y.; Jang, J. W.; Choi, M.; Lee, J. S.; Yong, K. Adv. Energy Mater. 2014, 4, 1300775.

    101. [101]

      (101) Choi, H. M.; Ji, I. A.; Bang, J. H. ACS Appl. Mater. Interfaces 2014, 6, 2335. doi: 10.1021/am404355m

  • 加载中
    1. [1]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    2. [2]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    3. [3]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    4. [4]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    5. [5]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    6. [6]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    7. [7]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    8. [8]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    9. [9]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    10. [10]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    11. [11]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    12. [12]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    13. [13]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    14. [14]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    15. [15]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    16. [16]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    17. [17]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    18. [18]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    19. [19]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    20. [20]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

Metrics
  • PDF Downloads(0)
  • Abstract views(642)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return