Citation:
XU Zheng-Xia, YANG Ji-Tao, LIU Kang, GUO Xiao-Qiang. Shape Evolution Behavior of Anatase Titania Nanocrystals via the Solvothermal Method[J]. Acta Physico-Chimica Sinica,
;2016, 32(2): 581-588.
doi:
10.3866/PKU.WHXB201512014
-
Anatase titania nanocrystals with different shapes were successfully prepared by a solvothermal method, using titanium butoxide as a precursor, ethanol as a solvent, and lauric acid and dodecyl amine as stabilizing agents. The structure, size, morphology, and shape of the nanocrystals were characterized by transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), Fourier transmission infrared (FTIR) spectroscopy, and thermogravimetric-differential thermal analysis (TG-DTA). We discuss how the ratio of lauric acid to dodecyl amine can influence the shape of nanocrystals. XRD results indicate that the phase of titania nanocrystals synthesized under different conditions is pure anatase. The shapes of titania nanocrystals gradually evolve from spheres to rods with increasing dodecyl amine content (at constant total molar content of lauric acid and dodecyl amine). The crystallinity of anatase titania nanocrystals prepared at a molar ratio of 1:1 (lauric acid to dodecyl amine) was better than that of nanocrystals prepared at other molar ratios. The stabilizing agents and nanocrystal core were combined by a bridging coordination ligand, and the content of stabilizing agents in samples was about 5%.
-
Keywords:
- Anatase,
- Titania nanocrystal,
- Solvothermal method,
- Nanorod,
- Shape control
-
-
-
[1]
(1) Wu, H. B.; Hng, H. H.; Lou, X.W. Adv. Mater. 2012, 24 (19), 2567. doi: 10.1002/adma.v24.19
-
[2]
(2) Xu, P. C.; Liu, Y.; Wei, J. H.; Xiong, R.; Pan, C. X.; Shi, J.Acta Phys. -Chim. Sin. 2010, 26 (8), 2261. [许平昌, 柳阳, 魏建红, 熊锐, 潘春旭, 石兢. 物理化学学报, 2010, 26 (8), 2261.] doi: 10.3866/PKU.WHXB20100815
-
[3]
(3) Liu, B.; Aydil, E. S. J. Am. Chem. Soc. 2009, 131 (11), 3985.
-
[4]
(4) Wang, D.; Choi, D.; Li, J.; Yang, Z.; Nie, Z.; Kou, R.; Hu, D.; Wang, C.; Saraf, L. V.; Zhang, J.; Aksay, I. A.; Liu, J. ACS Nano 2009, 3 (4), 907. doi: 10.1021/nn900150y
-
[5]
(5) Wang, C.; Yin, L.; Zhang, L.; Qi, Y.; Lun, N.; Liu, N.Langmuir 2010, 26 (15), 12841. doi: 10.1021/la100910u
-
[6]
(6) Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S.C.; Cheng, H. M.; Lu, G. Q. Nature 2008, 453 (7195), 638. doi: 10.1038/nature06964
-
[7]
(7) Liu, G.; Yang, H. G.; Pan, J.; Yang, Y. Q.; Lu, G. Q.; Cheng, H.M. Chem. Rev. 2014, 114 (19), 9559. doi: 10.1021/cr400621z
-
[8]
(8) Wu, L. Y.; Li, C. J. Chin. J. Inorg. Chem. 2002, 18 (4), 399. [吴腊英, 李长江. 无机化学学报, 2002, 18 (4), 399.]
-
[9]
(9) Sugimoto, T.; Zhou, X.; Muramatsu, A. J. Colloid Interface Sci. 2003, 259 (1), 53. doi: 10.1016/S0021-9797(03)00035-3
-
[10]
(10) Yu, J. G.; Xiong, J. F.; Cheng, B. Chin. J. Catal. 2005, 26 (9), 745. [余家国, 熊建锋, 程蓓. 催化学报, 2005, 26 (9), 745.]
-
[11]
(11) Yang, X. H.; Li, Z.; Sun, C.; Yang, H. G.; Li, C. Chem. Mater. 2011, 23 (15), 3486. doi: 10.1021/cm2008768
-
[12]
(12) Li, X. L.; Peng, Q.; Yi, J. X.; Wang, X.; Li, Y. Chem. -Eur. J. 2006, 12 (8), 2383.
-
[13]
(13) Wu, B.; Guo, C.; Zheng, N.; Xie, Z.; Stucky, G. D. J. Am. Chem. Soc. 2008, 130 (51), 17563. doi: 10.1021/ja8069715
-
[14]
(14) Dinh, C. T.; Nguyen, T. D.; Kleitz, F.; Do, T. O. ACS Nano 2009, 3 (11), 3737. doi: 10.1021/nn900940p
-
[15]
(15) Zhao, X.; Jin, W.; Cai, J.; Ye, J.; Li, Z.; Ma, Y.; Xie, J.; Qi, L.Adv. Funct. Mater. 2011, 21 (18), 3554. doi: 10.1002/adfm.201100629
-
[16]
(16) Wilson, G. J.; Matijasevich, A. S.; Mitchell, D. R.; Schulz, J.C.; Will, G. D. Langmuir 2006, 22 (5), 2016. doi: 10.1021/la052716j
-
[17]
(17) Lin, J.; Lin, Y.; Liu, P.; Meziani, M. J.; Allard, L. F.; Sun, Y. P.J. Am. Chem. Soc. 2002, 124 (38), 11514. doi: 10.1021/ja0206341
-
[18]
(18) Zhao, B.; Lin, L.; Chen, C.; Chai, Y. C.; He, D. N. Acta Chim. Sin. 2013, 71 (1), 93. [赵斌, 林琳, 陈超, 柴瑜超, 何丹农. 化学学报, 2013, 71 (1), 93.] doi: 10.6023/A12090724
-
[19]
(19) Gordon, T. R.; Cargnello, M.; Paik, T.; Mangolini, F.; Weber, R. T.; Fornasiero, P.; Murray, C. B. J. Am. Chem. Soc. 2012, 134 (15), 6751. doi: 10.1021/ja300823a
-
[20]
(20) Zou, L.; Wu, X. D.; Chen, H. G.; Wang, D. P. Acta Phys. -Chim. Sin. 2001, 17 (4), 305. [邹玲, 乌学东, 陈海刚, 王大璞. 物理化学学报, 2001, 17 (4), 305.] doi: 10.3866/PKU.WHXB20010405
-
[21]
(21) Han, X.; Kuang, Q.; Jin, M.; Xie, Z.; Zheng, L. J. Am. Chem. Soc. 2009, 131 (9), 3152. doi: 10.1021/ja8092373
-
[22]
(22) Yang, H. G.; Liu, G.; Qiao, S. Z.; Sun, C. H.; Jin, Y. G.; Smith, S. C.; Zou, J.; Cheng, H. M.; Lu, G. Q. J. Am. Chem. Soc. 2009, 131 (11), 4078. doi: 10.1021/ja808790p
-
[23]
(23) Wu, H. B.; Chen, J. S.; Lou, X.W.; Hng, H. H. Nanoscale 2011, 3 (10), 4082. doi: 10.1039/c1nr10854a
-
[24]
(24) Jun, Y.W.; Casula, M. F.; Sim, J. H.; Kim, S. Y.; Cheon, J.; Alivisatos, A. P. J. Am. Chem. Soc. 2003, 125 (51), 15981. doi: 10.1021/ja0369515
-
[25]
(25) Jin, J.; Iyoda, T.; Cao, C.; Song, Y.; Jiang, L.; Li, T. J.; Zhu, D.B. Angew. Chem. Int. Edit. 2001, 40 (11), 2135.
-
[26]
(26) Hay, J. N.; Raval, H. M. Chem. Mater. 2001, 13 (10), 3396. doi: 10.1021/cm011024n
-
[27]
(27) Bronstein, L. M.; Huang, X.; Retrum, J.; Schmucker, A.; Pink, M.; Stein, B. D.; Dragnea, B. Chem. Mater. 2007, 19 (15), 3624. doi: 10.1021/cm062948j
-
[28]
(28) Xu, Z.; Hu, G. RSC Adv. 2012, 2 (30), 11404. doi: 10.1039/c2ra21745g
-
[29]
(29) Swamy, V.; Kuznetsov, A.; Dubrovinsky, L. S.; Caruso, R. A.; Shchukin, D. G.; Muddle, B. C. Phys. Rev. B 2005, 71 (18), 184302. doi: 10.1103/PhysRevB.71.184302
-
[30]
(30) Xue, X.; Ji, W.; Mao, Z.; Mao, H.; Wang, Y.; Wang, X.; Ruan, W.; Zhao, B.; Lombardi, J. R. J. Phys. Chem. C 2012, 116(15), 8792. doi: 10.1021/jp2122196
-
[31]
(31) Xu, C. Y.; Zhang, P. X.; Yan, L. J. Raman Spectrosc. 2001, 32(10), 862.
-
[32]
(32) Choi, H. C.; Jung, Y. M.; Kim, S. B. Vib. Spectrosc. 2005, 37(1), 33. doi: 10.1016/j.vibspec.2004.05.006
-
[1]
-
-
-
[1]
Juan Yuan , Bin Zhang , Jinping Wu , Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014
-
[2]
Hao GUO , Tong WEI , Qingqing SHEN , Anqi HONG , Zeting DENG , Zheng FANG , Jichao SHI , Renhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085
-
[3]
Jian Li , Yu Zhang , Rongrong Yan , Kaiyuan Sun , Xiaoqing Liu , Zishang Liang , Yinan Jiao , Hui Bu , Xin Chen , Jinjin Zhao , Jianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042
-
[4]
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025
-
[5]
Nengmin ZHU , Wenhao ZHU , Xiaoyao YIN , Songzhi ZHENG , Hao LI , Zeyuan WANG , Wenhao WEI , Xuanheng CHEN , Weihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419
-
[6]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[7]
Hongpeng He , Mengmeng Zhang , Mengjiao Hao , Wei Du , Haibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043
-
[8]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[9]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[10]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[11]
Junmei FAN , Wei LIU , Ruitao ZHU , Chenxi QIN , Xiaoling LEI , Haotian WANG , Jiao WANG , Hongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120
-
[12]
Zhangyong LIU , Lihui XU , Yue YANG , Liming WANG , Hong PAN , Xinzhe HUANG , Xueqiang FU , Yingxiu ZHANG , Meiran DOU , Meng WANG , Yi TENG . Preparation and photocatalytic performance of CsxWO3/TiO2 based on full spectral response. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1445-1464. doi: 10.11862/CJIC.20240345
-
[13]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016
-
[14]
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
-
[15]
Weicheng Feng , Jingcheng Yu , Yilan Yang , Yige Guo , Geng Zou , Xiaoju Liu , Zhou Chen , Kun Dong , Yuefeng Song , Guoxiong Wang , Xinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013
-
[16]
Yao Ma , Xin Zhao , Hongxu Chen , Wei Wei , Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 2309045-0. doi: 10.3866/PKU.WHXB202309045
-
[17]
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011
-
[18]
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
-
[19]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[20]
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(511)
- HTML views(47)