Citation: LIU Zhi-Hong, FAN Cheng-Cheng, ZHANG Tian-Tian, JI Xian-Jing, CHEN Sheng-Hui, SUN Shuang-Qing, HU Song-Qing. Density Functional Theory Study of the Interaction between Sodium Dodecylbenzenesulfonate and Mineral Cations[J]. Acta Physico-Chimica Sinica, ;2016, 32(2): 445-452. doi: 10.3866/PKU.WHXB201512013 shu

Density Functional Theory Study of the Interaction between Sodium Dodecylbenzenesulfonate and Mineral Cations

  • Corresponding author: HU Song-Qing, 
  • Received Date: 28 July 2015
    Available Online: 27 November 2015

    Fund Project: 中国石油科技创新基金(2015D-5006-0213) (2015D-5006-0213)中央高校基本科研业务费专项资金(14CX02221A,14CX06157A)资助项目 (14CX02221A,14CX06157A)

  • Investigating the interactions between anionic surfactants and cations is of great theoretical and practical significance to understanding the precipitation and solubility of anionic surfactant products but relevant theoretical interaction models are seldom reported. In this paper, the density functional theory (DFT) method was used to investigate the interactions of the dodecylbenzenesulfonate anion (DBS-) with Na+, Mg2+, and Ca2+ both in the solution and at the air/water interface. In the solution, DBS-/cation interaction models were built and optimized with consideration of two different solutions (i.e. water and n-dodecane). The results indicate that DBScan bind stably with the cations in a bidentate form. The binding energy of the DBS-/cation depends on the properties of both the participating cation and the solvent. At the air/water interface, DBS- formed a stable hydrated complex with six water molecules (i.e. DBS-·6H2O). However, the structure of DBS-·6H2O was greatly disturbed by the introduction of the cation. A dimensionless parameter, def, was proposed to evaluate the deformation extent of the hydration shell. The degree of disturbance by the cations follows the order: Ca2+ >Mg2+ > Na+. A charge analysis reveals that the hydration shell plays an important role in the interactions between the sodium dodecyl benzene sulfonate (SDBS) headgroup and the cation.
  • 加载中
    1. [1]

      (1) Rosen, M. J.; Kunjappu, J. T. Surfactants and Interfacial Phenomena; Wiley: New Jersey, 2012.

    2. [2]

      (2) Hirasaki, G.; Miller, C.; Puerto, M. SPE Journal 2011, 16, 889. doi: 10.2118/115386-PA

    3. [3]

      (3) Cserhá ti, T.; Forgá cs, E.; Oros, G. Environment International 2002, 28, 337. doi: 10.1016/S0160-4120(02)00032-6

    4. [4]

      (4) Gomez, V.; Ferreres, L.; Pocurull, E.; Borrull, F. Talanta 2011, 84, 859. doi: 10.1016/j.talanta.2011.02.009

    5. [5]

      (5) Yu, D.; Wang, Y.; Zhang, J.; Tian, M.; Han, Y.; Wang, Y.Journal of Colloid and Interface Science 2012, 381, 83. doi: 10.1016/j.jcis.2012.05.016

    6. [6]

      (6) Santos, F. K. G.; Neto, E. L. B.; Moura, M. C. P. A.; Dantas, T.N. C.; Neto, A. A. D. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2009, 333, 156. doi: 10.1016/j.colsurfa.2008.09.040

    7. [7]

      (7) Vakarelski, I. U.; Dushkin, C. D. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2000, 163, 177. doi: 10.1016/S0927-7757(99)00306-4

    8. [8]

      (8) Stellner, K. L.; Scamehorn, J. F. Langmuir 1989, 5, 70. doi: 10.1021/la00085a014

    9. [9]

      (9) Noï k, C.; Baviè re, M.; Defives, D. Journal of Colloid and Interface Science 1987, 115, 36. doi: 10.1016/0021-9797(87)90006-3

    10. [10]

      (10) Bordes, R.; Tropsch, J.; Holmberg, K. Journal of Colloid and Interface Science 2009, 338, 529. doi: 10.1016/j.jcis.2009.06.032

    11. [11]

      (11) Bordes, R.; Holmberg, K. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2011, 391, 32. doi: 10.1016/j.colsurfa.2011.03.023

    12. [12]

      (12) Pereira, R. F. P.; Valente, A. J. M.; Fernandes, M.; Burrows, H.D. Physical Chemistry Chemical Physics 2012, 14, 7517.

    13. [13]

      (13) Zhao, T. T.; Xu, G. Y.; Yuan, S. L.; Chen, Y.; Yan, H. The Journal of Physical Chemistry B 2010, 114, 5025.

    14. [14]

      (14) Yan, H.; Guo, X. L.; Yuan, S. L.; Liu, C. B. Langmuir 2011, 27, 5762. doi: 10.1021/la1049869

    15. [15]

      (15) Sammalkorpi, M.; Karttunen, M.; Haataja, M. The Journal of Physical Chemistry B 2009, 113, 5863. doi: 10.1021/jp901228v

    16. [16]

      (16) Domínguez, H. Langmuir 2009, 25, 9006. doi: 10.1021/la900714a

    17. [17]

      (17) Yan, P.; Xiao, J. X. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2004, 244, 39. doi: 10.1016/j.colsurfa.2004.06.023

    18. [18]

      (18) Motamedi, M.; Bathaie, S. Z.; Hemmateenejad, B.; Adjloo, D.Journal of Molecular Structure: Theochem 2004, 678, 163.

    19. [19]

      (19) Kocherbitov, V.; Veryazov, V.; Sö derman, O. Theochem 2007, 808, 111. doi: 10.1016/j.theochem.2006.12.043

    20. [20]

      (20) Aime, C.; Plet, B.; Manet, S.; Schmitter, J. M.; Huc, I.; Oda, R.; Sauers, R. R.; Romsted, L. S. The Journal of Physical Chemistry B 2008, 112, 14435. doi: 10.1021/jp802801r

    21. [21]

      (21) Zhu, M.; Ge, F.; Zhu, R.; Wang, X.; Zheng, X. Chemosphere 2010, 80, 46. doi: 10.1016/j.chemosphere.2010.03.044

    22. [22]

      (22) Zieliń ski, R.; Szymusiak, H. International Journal of Quantum Chemistry 2004, 99, 724.

    23. [23]

      (23) Li, Z. Q.; Yan, H.; Song, X.W.; Yuan, S. L.; Pan, B. L.; Wang, L. J. Acta Chimica Sinica 2011, 69, 898. [李振泉, 延辉, 宋新旺, 苑世领, 潘斌林, 王丽娟. 物理化学学报, 2011, 69, 898.] doi: 10.3866/PKU.WHXB20110431

    24. [24]

      (24) Cao, X. L.; Lü , K.; Cui, X. H.; Shi, J.; Yuan, S. L. Acta Physico-Chimica Sinica 2010, 26, 1959. [曹绪龙, 吕凯, 崔晓红, 石静, 苑世领. 物理化学学报, 2010, 26, 1959.] doi: 10.3866/PKU.WHXB20100706

    25. [25]

      (25) Vlachy, N.; Jagoda-Cwiklik, B.; Vá cha, R.; Touraud, D.; Jungwirth, P.; Kunz, W. Advances in Colloid and Interface Science 2009, 146, 42. doi: 10.1016/j.cis.2008.09.010

    26. [26]

      (26) Iype, E.; Nedea, S. V.; Rindt, C. C. M.; Steenhoven, A. A. V.; Zondag, H. A.; Jansen, A. P. J. The Journal of Physical Chemistry C 2012, 116, 18584. doi: 10.1021/jp3025649

    27. [27]

      (27) Fumino, K.; Peppel, T.; Geppert-Rybczynska, M.; Zaitsau, D.H.; Lehmann, J. K.; Verevkin, S. P.; Kockerling, M.; Ludwig, R. Physical Chemistry Chemical Physics 2011, 13, 14064. doi: 10.1039/c1cp20732f

    28. [28]

      (28) Thanthiriwatte, K. S.; Hohenstein, E. G.; Burns, L. A.; Sherrill, C. D. Journal of Chemical Theory and Computation 2010, 7, 88.

    29. [29]

      (29) Shishkin, M.; Ziegler, T. The Journal of Physical Chemistry C 2009, 113, 21667. doi: 10.1021/jp905615c

    30. [30]

      (30) Inada, Y.; Orita, H. Journal of Computational Chemistry 2008, 29 (2), 225.

    31. [31]

      (31) Delley, B. The Journal of Chemical Physics 1990, 92 (1), 508. doi: 10.1063/1.458452

    32. [32]

      (32) Klamt, A.; Schuurmann, G. Journal of the Chemical Society, Perkin Transactions 1993, 2, 799.

    33. [33]

      (33) Li, X. J.; Su, K. H. Theor. Chem. Acc. 2009, 124, 345. doi: 10.1007/s00214-009-0618-9

    34. [34]

      (34) Bandyopadhyay, D.; Sen, P. The Journal of Physical Chemistry A 2010, 114, 1835. doi: 10.1021/jp905561n

    35. [35]

      (35) Mayer, I. Journal of Quantum Chemistry 1986, 29, 477.

    36. [36]

      (36) Gece, G. Corrosion Science 2008, 50, 2981. doi: 10.1016/j.corsci.2008.08.043

    37. [37]

      (37) Kiriukhin, M. Y.; Collins, K. D. Biophysical Chemistry 2002, 99, 155. doi: 10.1016/S0301-4622(02)00153-9

    38. [38]

      (38) Shishkin, O. V.; Gorb, L.; Leszczynski, J. The Journal of Physical Chemistry B 2000, 104, 5357. doi: 10.1021/jp993144c

    39. [39]

      (39) Zhao, G. X.; Zhu, B. Y.; Dou, Z. P.; Yan, P.; Xiao, J. X.Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008, 327, 122. doi: 10.1016/j.colsurfa.2008.06.014

    40. [40]

      (40) Huibers, P. D. T. Langmuir 1999, 15, 7546. doi: 10.1021/la990367l

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    8. [8]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    9. [9]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    10. [10]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    11. [11]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    12. [12]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    13. [13]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    14. [14]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    15. [15]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    16. [16]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

    17. [17]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    18. [18]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    19. [19]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    20. [20]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

Metrics
  • PDF Downloads(0)
  • Abstract views(402)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return