Citation: WANG Yan-Juan, SUN Jia-Yao, FENG Rui-Jiang, ZHANG Jian. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Physico-Chimica Sinica, ;2016, 32(3): 728-736. doi: 10.3866/PKU.WHXB201511303 shu

Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light

  • Corresponding author: ZHANG Jian, 
  • Received Date: 15 September 2015
    Available Online: 24 November 2015

    Fund Project: 辽宁省自然科学基金(2015020590) (2015020590)

  • A novel Zn-Mo-CdS/g-C3N4 heterojunction photocatalyst was prepared by hydrothermal posttreatment using dicyandiamide, zinc acetate, ammonium molybdate, cadmium acetate, and sodium sulfide as raw materials. X-ray diffraction (XRD), ultraviolet-visible (UV-Vis), inductively coupled plasma atomic emission (ICP-AES), electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectroscopy (XPS) were used to characterize the prepared catalysts. The results indicate that heterojunctions are formed across the g-C3N4/Zn-Mo-CdS interface, which promotes interfacial charge transfer and inhibits the recombination of electrons and holes. The activities of as-prepared catalysts were tested through the photocatalytic degradation of Rhodamine B (RhB) under visible light. The results show that the Zn-Mo-CdS/g-C3N4 heterojunction photocatalyst clearly displayed increased activity compared with single g-C3N4 and Zn-Mo-CdS. At an optimal g-C3N4 mass fraction of 20%, the as-prepared heterojunction photocatalyst displayed the highest rate constant under visible light, which was 30 and 10 times of single g-C3N4 and Zn-Mo-CdS, respectively. Not only Zn-Mo-CdS, but also Mo-Ni-CdS and Ni-Sn-CdS can form heterojunctions with g-C3N4 to promote the rate of separation of electrons and holes and improve photocatalytic activity.
  • 加载中
    1. [1]

      (1) Kondo, K.; Murakami, N.; Ye, C.; Tsubota, T.; Ohno, T. Appl. Catal. B: Environ. 2013, 142-143, 362.

    2. [2]

      (2) Chen, X. B.; Shen, S. H.; Guo, L. J. Chem. Rev. 2010, 110, 6503. doi: 10.1021/cr1001645

    3. [3]

      (3) Zhang, G. G.; Zhang, M.W.; Ye, X. X.; Qiu, X. Q.; Lin, S.; Wang, X. C. Adv. Mater. 2014, 26, 805. doi: 10.1002/adma.201303611

    4. [4]

      (4) Xu, J.; Wu, H. T.; Wang, X.; Xue, B.; Li, Y. X.; Cao, Y. Phys. Chem. Chem. Phys. 2013, 15, 4510. doi: 10.1039/c3cp44402c

    5. [5]

      (5) Ge, L. Mater. Lett. 2011, 65, 2652. doi: 10.1016/j.matlet.2011.05.069

    6. [6]

      (6) Niu, P.; Zhang, L.; Liu, G.; Cheng, H. Adv. Funct. Mater. 2012, 22, 4763. doi: 10.1002/adfm.v22.22

    7. [7]

      (7) Zhang, Q.; Wang, H. Y.; Hu, S. Z.; Lu, G.; Bai, J.; Kang, X.X.; Liu, D.; Gui, J. Z. RSC Adv. 2015, 5, 42736. doi: 10.1039/C5RA04189A

    8. [8]

      (8) Ong, W. J.; Tan, L. L.; Chai, S. P.; Yong, S. T. Chem. Commun.2015, 51, 858. doi: 10.1039/C4CC08996K

    9. [9]

      (9) Ong, W. J.; Tan, L. L.; Chai, S. P.; Yong, S. T.; Mohamed, A.R. Nano Energy 2015, 13, 757. doi: 10.1016/j.nanoen.2015.03.014

    10. [10]

      (10) Tian, N.; Huang, H.W.; He, Y.; Guo, Y. X.; Zhang, Y. H. RSC Adv. 2014, 4, 42716. doi: 10.1039/C4RA05917D

    11. [11]

      (11) He, Y. M.; Zhang, L. H.; Wang, X. X.; Wu, Y.; Lin, H. J.; Zhao, L. H.; Weng, W. Z.; Wan, H. L.; Fan, M. H. RSC Adv. 2014, 4, 13610. doi: 10.1039/c4ra00693c

    12. [12]

      (12) Wang, Y. J.; Bai, X. J.; Pan, C. S.; He, J.; Zhu, Y. F. J. Mater. Chem. 2012, 22, 11568. doi: 10.1039/c2jm16873a

    13. [13]

      (13) Hu, J. S.; Ren, L. L.; Guo, Y. G.; Liang, H. P.; Cao, A. M.; Wan, L. J.; Bai, C. L. Angew. Chem. Int. Edit. 2012, 44, 1269.

    14. [14]

      (14) Yan, H. J.; Yang, J. H.; Ma, G. J.; Wu, G. P.; Zong, X.; Lei, Z.B.; Shi, J. Y.; Li, C. J. Catal. 2009, 266, 165. doi: 10.1016/j.jcat.2009.06.024

    15. [15]

      (15) Huo, Y. N.; Yang, X. L.; Zhu, J.; Li, H. X. Appl. Catal. B: Environ. 2011, 106, 69.

    16. [16]

      (16) Fan, Y. H.; Luo, Q.; Liu, G. X.; Wang, J. X.; Dong, X. T.; Yu, W. S.; Sun, D. Chin. J. Inorg. Chem. 2014, 30, 627. [范英华, 雒琴, 刘桂霞, 王进贤, 董相廷, 于文生, 孙德. 无机化学学报, 2014, 30, 627.]

    17. [17]

      (17) Nie, Q. L.; Yuan, Q. L.; Wang, Q. S.; Xu, Z. D. J. Mater. Sci.2004, 39, 5611. doi: 10.1023/B: JMSC.0000039301.70811.a4

    18. [18]

      (18) Xia, S.; Lei, W.; Yang, Y. L. Nanoscale Res. Lett. 2011, 6, 562. doi: 10.1186/1556-276X-6-562

    19. [19]

      (19) Xu, Y.; Schoonen, M. A. A. Am. Mineral. 2000, 85, 543. doi: 10.2138/am-2000-0416

    20. [20]

      (20) Ge, L.; Han, C.; Xiao, X. Int. J. Hydrog. Energy 2013, 38, 6960. doi: 10.1016/j.ijhydene.2013.04.006

    21. [21]

      (21) Sun, M.; Yan, T.; Yan, Q; Liu, H. Y.; Yan, L. G.; Zhang, Y. F.; Du, B. RSC Adv. 2014, 4, 19980. doi: 10.1039/c4ra01439a

    22. [22]

      (22) Sun, M.; Yan, Q.; Yan, T.; Li, M. M.; Wei, D.; Wang, Z. P.; Wei, Q.; Du, B. RSC Adv. 2014, 4, 31019. doi: 10.1039/C4RA03843F

    23. [23]

      (23) Xiang, Q.; Yu, J.; Jaroniec, M. J. Am. Chem. Soc. 2012, 134, 6575. doi: 10.1021/ja302846n

    24. [24]

      (24) Zong, X.; Yan, H. J.; Wu, G. P.; Ma, G. J.; Wen, F. Y.; Wang, L.; Li, C. J. Am. Chem. Soc. 2008, 130, 7176. doi: 10.1021/ja8007825

    25. [25]

      (25) Shen, L. J.; Luo, M. B.; Liu, Y. H.; Liang, R.W.; Jing, F. F.; Wu, L. Appl. Catal. B: Environ. 2015, 166-167, 445.

    26. [26]

      (26) Chen, F. J.; Cao, Y. L.; Jia, D. Z.; Liu, A. J. Dyes Pigments2015, 120, 8. doi: 10.1016/j.dyepig.2015.03.030

    27. [27]

      (27) Chen, F. J.; Cao, Y. L.; Jia, D. Z. Ceram. Int. 2015, 41, 6645. doi: 10.1016/j.ceramint.2015.01.111

    28. [28]

      (28) Hu, S. Z.; Li, F. Y.; Fan, Z. P.; Wang, F.; Zhao, Y. F.; Lv, Z. B. Dalton Trans. 2015, 44, 1084. doi: 10.1039/C4DT02658F

    29. [29]

      (29) Wang, D. S.; Duan, Y. D.; Luo, Q. Z.; Li, X. Y.; Bao, L. L.Desalination 2011, 270, 174. doi: 10.1016/j.desal.2010.11.042

    30. [30]

      (30) Lu, M. L.; Pei, Z. X.; Weng, S. X.; Feng, W. H.; Fang, Z. B.; Zheng, Z. Y.; Huang, M. L.; Liu, P. Phys. Chem. Chem. Phys.2014, 16, 21280. doi: 10.1039/C4CP02846E

    31. [31]

      (31) Liu, L. Y.; Yang, L.; Pu, Y. T.; Xiao, D. Q.; Zhu, J. G. Mater. Lett. 2012, 66, 121. doi: 10.1016/j.matlet.2011.08.025

    32. [32]

      (32) Ge, L.; Han, C. C.; Liu, J. Appl. Catal. B: Environ. 2011, 108-109, 100.

    33. [33]

      (33) Liu, H.; Jin, Z. T.; Xu, Z. Z. Dalton Trans. 2015, 44, 14368. doi: 10.1039/C5DT01364J

    34. [34]

      (34) Dong, F.; Zhao, Z.W.; Xiong, T.; Ni, Z. L.; Zhang, W. D.; Sun, Y. J.; Ho, W. K. ACS Appl. Mater. Interf. 2013, 5, 11392. doi: 10.1021/am403653a

    35. [35]

      (35) Cao, J.; Luo, B. D.; Lin. H. L.; Xu, B. Y.; Chen, S. F.J. Hazard. Mater. 2012, 217-218, 107.

    36. [36]

      (36) Wang, Y.; Wang, X. C.; Antonietti, M. Angew. Chem. Int. Edit.2012, 51, 68. doi: 10.1002/anie.201101182

    37. [37]

      (37) Ge, L.; Han, C. Appl. Catal. B: Environ. 2012, 117-118, 268.

    38. [38]

      (38) Ma, D. K.; Zhou, H. Y.; Zhang, J. H.; Qian, Y. T. Mater. Chem. Phys. 2008, 111, 391. doi: 10.1016/j.matchemphys.2008.04.035

    39. [39]

      (39) Zhu, Y. P.; Li, J.; Ma, T. Y.; Liu, Y. P.; Du, G. H.; Yuan, Z. Y.J. Mater. Chem. A 2014, 2, 1093. doi: 10.1039/C3TA13636A

    40. [40]

      (40) Zhang, K.; Kim, W. J.; Ma, M.; Shi, X. J.; Park, J. H. J. Mater. Chem. A 2015, 3, 4803. doi: 10.1039/C4TA05571C

    41. [41]

      (41) Li, Y. G.; Wei, X. L.; Li, H. J.; Wang, R. R.; Feng, J.; Yun, H.; Zhou, A. N. RSC Adv. 2015, 5, 14074 doi: 10.1039/C4RA14690E

    42. [42]

      (42) Xu, Y.; Xu, H.; Wang, L.; Yan, J.; Li, H.; Song, Y.; Huang, L.; Cai, G. Dalton Trans. 2013, 42, 7604. doi: 10.1039/c3dt32871f

    43. [43]

      (43) He, B. L.; Dong, B.; Li, H. L. Electrochem. Commun. 2007, 9, 425. doi: 10.1016/j.elecom.2006.10.008

    44. [44]

      (44) Zhang, J.; Wang, Y. J.; Hu, S. Z. Acta Phys. -Chim. Sin. 2015, 31, 159. [张健, 王彥娟, 胡绍争. 物理化学学报, 2015, 31, 159.] doi: 10.3866/PKU.WHXB201411201

  • 加载中
    1. [1]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    2. [2]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    3. [3]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    4. [4]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    5. [5]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    6. [6]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    7. [7]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    8. [8]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    9. [9]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    10. [10]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    11. [11]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    12. [12]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    13. [13]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    14. [14]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    15. [15]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    16. [16]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    17. [17]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    19. [19]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    20. [20]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

Metrics
  • PDF Downloads(0)
  • Abstract views(479)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return