Citation:
CHEN Xu-Dong, CHEN Zhao-Long, SUN Jing-Yu, ZHANG Yan-Feng, LIU Zhong-Fan. Graphene Glass: Direct Growth of Graphene on Traditional Glasses[J]. Acta Physico-Chimica Sinica,
;2016, 32(1): 14-27.
doi:
10.3866/PKU.WHXB201511133
-
Glass, an amorphous oxide material with a long history, is widely used in our daily life. Graphene is a novel two-dimensional material formed by carbon atoms. The unique properties of graphene, such as excellent mechanical strength, high electrical and thermal conductivity and optical transparency, serve as complementary components to those of glass. Therefore, the combination of graphene and glass would endow noticeable electrical/thermal conductivity and surface hydrophobicity without sacrificing the transparency of conventional glass. Previously reported routes for integrating graphene with glass mainly used solution-casting of liquid-exfoliated graphene nanoplatelets and transfer-coating of graphene films grown on metals. Compared with the existing methods, the direct growth of graphene on glass could avoid contamination and damage during the integration process, thereby resulting in good graphene quality and scalability, high thickness/ coverage uniformity, much reduced breakage density, and a tight and clean interface with the underlying glass. In this article, we review our recent progress on the direct growth of graphene on various glass by chemical vapor deposition (CVD). With the consideration of the thermo-stabilities of glass and application requirements, three different CVD routes are developed, i.e., high-temperature, atmospheric pressure CVD on solid-state thermostable glass and molten-state glass, as well as low-temperature plasma enhanced CVD on solid-state soda-lime floating glass. We also explore the practical applications of the as-grown graphene glass, where electrochromic windows, defoggers, cell proliferation, and photocatalytic plates were fabricated based on our CVD-grown graphene glass. The high performance of these devices promises practical usage of graphene glass in daily-life applications.
-
-
-
[1]
(1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896
-
[2]
(2) Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. Nature 2012, 490, 192. doi: 10.1038/nature11458
-
[3]
(3) Yan, K.; Fu, L.; Peng, H.; Liu, Z. Accounts Chem. Res. 2013, 46, 2263. doi: 10.1021/ar400057n
-
[4]
(4) Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Nature Photon. 2010, 4, 611. doi: 10.1038/nphoton.2010.186
-
[5]
(5) Geim, A. K.; Novoselov, K. S. Nature Mater. 2007, 6, 183. doi: 10.1038/nmat1849
-
[6]
(6) Geim, A. K. Science 2009, 324, 1530. doi: 10.1126/science.1158877
-
[7]
(7) Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Science 2008, 320, 1308. doi: 10.1126/science.1156965
-
[8]
(8) Geim, A. K. Rev. Mod. Phys. 2011, 83, 851. doi: 10.1103/RevModPhys.83.851
-
[9]
(9) Novoselov, K. S. Rev. Mod. Phys. 2011, 83, 837. doi: 10.1103/RevModPhys.83.837
-
[10]
(10) Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385. doi: 10.1126/science.1157996
-
[11]
(11) Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Nature Nanotech. 2008, 3, 491. doi: 10.1038/nnano.2008.199
-
[12]
(12) Seol, J. H.; Jo, I.; Moore, A. L.; Lindsay, L.; Aitken, Z. H.; Pettes, M. T.; Li, X.; Yao, Z.; Huang, R.; Broido, D.; Mingo, N.; Ruoff, R. S.; Shi, L. Science 2010, 328, 213. doi: 10.1126/science.1184014
-
[13]
(13) Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I.; Kim, Y. J.; Kim, K. S.; Ozyilmaz, B.; Ahn, J. H.; Hong, B. H.; Iijima, S. Nature Nanotech. 2010, 5, 574.
-
[14]
(14) Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B. Z. Nano Lett. 2010, 10, 4863. doi: 10.1021/nl102661q
-
[15]
(15) Lin, Y. M.; Valdes-Garcia, A.; Han, S. J.; Farmer, D. B.; Meric, I.; Sun, Y.; Wu, Y.; Dimitrakopoulos, C.; Grill, A.; Avouris, P.; Jenkins, K. A. Science 2011, 332, 1294. doi: 10.1126/science.1204428
-
[16]
(16) Xia, F.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Nature Nanotech. 2009, 4, 839. doi: 10.1038/nnano.2009.292
-
[17]
(17) Park, J.; Ahn, Y. H.; Ruiz-Vargas, C. Nano Lett. 2009, 9, 1742. doi: 10.1021/nl8029493
-
[18]
(18) Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Nature Nanotech. 2014, 9, 780.
-
[19]
(19) Yoo, E.; Kim, J.; Hosono, E.; Zhou, H. S.; Kudo, T.; Honma, I. Nano Lett. 2008, 8, 2277. doi: 10.1021/nl800957b
-
[20]
(20) Xu, M.; Fujita, D.; Hanagata, N. Small 2009, 5, 2638. doi: 10.1002/smll.v5:23
-
[21]
(21) Garaj, S.; Hubbard, W.; Reina, A.; Kong, J.; Branton, D.; Golovchenko, J. A. Nature 2010, 467, 190. doi: 10.1038/nature09379
-
[22]
(22) Xing, F.; Liu, Z. B.; Deng, Z. C.; Kong, X. T.; Yan, X. Q.; Chen, X. D.; Ye, Q.; Zhang, C. P.; Chen, Y. S.; Tian, J. G. Sci. Rep. 2012, 2, 908. doi: 10.1038/srep00908
-
[23]
(23) Xing, F.; Meng, G. X.; Zhang, Q.; Pan, L. T.; Wang, P.; Liu, Z. B.; Jiang, W. S.; Chen, Y.; Tian, J. G. Nano Lett. 2014, 14, 3563. doi: 10.1021/nl5012036
-
[24]
(24) Xu, W.; Ling, X.; Xiao, J.; Dresselhaus, M. S.; Kong, J.; Xu, H.; Liu, Z.; Zhang, J. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 9281. doi: 10.1073/pnas.1205478109
-
[25]
(25) Paton, K. R.; Varrla, E.; Backes, C.; Smith, R. J.; Khan, U.; O'Neill, A.; Boland, C.; Lotya, M.; Istrate, O. M.; King, P.; Higgins, T.; Barwich, S.; May, P.; Puczkarski, P.; Ahmed, I.; Moebius, M.; Pettersson, H.; Long, E.; Coelho, J.; O'Brien, S. E.; McGuire, E. K.; Sanchez, B. M.; Duesberg, G. S.; McEvoy, N.; Pennycook, T. J.; Downing, C.; Crossley, A.; Nicolosi, V.; Coleman, J. N. Nature Mater. 2014, 13, 624. doi: 10.1038/nmat3944
-
[26]
(26) Li, X.; Zhang, G.; Bai, X.; Sun, X.; Wang, X.; Wang, E.; Dai, H. Nature Nanotech. 2008, 3, 538. doi: 10.1038/nnano.2008.210
-
[27]
(27) Dai, B.; Fu, L.; Zou, Z.; Wang, M.; Xu, H.; Wang, S.; Liu, Z. Nature Commun. 2011, 2, 522. doi: 10.1038/ncomms1539
-
[28]
(28) Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Science 2009, 324, 1312. doi: 10.1126/science.1171245
-
[29]
(29) Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Nature 2009, 457, 706. doi: 10.1038/nature07719
-
[30]
(30) Gao, T.; Xie, S.; Gao, Y.; Liu, M.; Chen, Y.; Zhang, Y.; Liu, Z. ACS Nano 2011, 5, 9194. doi: 10.1021/nn203440r
-
[31]
(31) Pan, Y.; Zhang, H.; Shi, D.; Sun, J.; Du, S.; Liu, F.; Gao, H. J. Adv. Mater. 2009, 21, 2777. doi: 10.1002/adma.200800761
-
[32]
(32) Gao, L.; Ren, W.; Xu, H.; Jin, L.; Wang, Z.; Ma, T.; Ma, L. P.; Zhang, Z.; Fu, Q.; Peng, L. M.; Bao, X.; Cheng, H. M. Nature Commun. 2012, 3, 699. doi: 10.1038/ncomms1702
-
[33]
(33) Coraux, J.; N'Diaye, A. T.; Busse, C.; Michely, T. Nano Lett. 2008, 8, 565. doi: 10.1021/nl0728874
-
[34]
(34) Chae, S. J.; Guenes, F.; Kim, K. K.; Kim, E. S.; Han, G. H.; Kim, S. M.; Shin, H. J.; Yoon, S. M.; Choi, J. Y.; Park, M. H.; Yang, C. W.; Pribat, D.; Lee, Y. H. Adv. Mater. 2009, 21, 2328. doi: 10.1002/adma.v21:22
-
[35]
(35) Li, X.; Cai, W.; Colombo, L.; Ruoff, R. S. Nano Lett. 2009, 9, 4268. doi: 10.1021/nl902515k
-
[36]
(36) Chen, J. S.; Wu, B.; Liu, Y. Q. Acta Chim. Sin. 2014, 72, 355. [陈集思, 武斌, 刘云圻. 化学学报, 2014, 72, 355.]
-
[37]
(37) Liu, N.; Fu, L.; Dai, B.; Yan, K.; Liu, X.; Zhao, R.; Zhang, Y.; Liu, Z. Nano Lett. 2011, 11, 297. doi: 10.1021/nl103962a
-
[38]
(38) Liu, M.; Zhang, Y.; Chen, Y.; Gao, Y.; Gao, T.; Ma, D.; Ji, Q.; Zhang, Y.; Li, C.; Liu, Z. ACS Nano 2012, 6, 10581.
-
[39]
(39) Zhang, C. H.; Fu, L.; Zhang, Y. F.; Liu, Z. F. Acta Chim. Sin. 2013, 71, 308. [张朝华, 付磊, 张艳锋, 刘忠范. 化学学报, 2013, 71, 308.] doi: 10.6023/A13010023
-
[40]
(40) Zou, Z. Y.; Dai, B. Y.; Liu, Z. F. Sci. Sin. Chim. 2012, 42, 1. [邹志宇, 戴博雅, 刘忠范. 中国科学: 化学, 2012, 42, 1.]
-
[41]
(41) Sun, J.; Chen, Y.; Priydarshi, M. K.; Chen, Z.; Bachmatiuk, A.; Zou, Z.; Chen, Z.; Song, X.; Gao, Y.; Ruemmeli, M. H.; Zhang, Y.; Liu, Z. Nano Lett. 2015, 15, 5846. doi: 10.1021/acs.nanolett.5b01936
-
[42]
(42) Sun, J.; Chen, Y.; Cai, X.; Ma, B.; Chen, Z.; Priydarshi, M. K.; Chen, K.; Gao, T.; Song, X.; Ji, Q.; Guo, X.; Zou, D.; Zhang, Y.; Liu, Z. Nano Res. doi: 10.1007/s12274-015-0849-0
-
[43]
(43) Chen, Y.; Sun, J.; Gao, J.; Du, F.; Han, Q.; Nie, Y.; Chen, Z.; Bachmatiuk, A.; Priydarshi, M. K.; Ma, D.; Song, X.; Wu, X.; Xiong, C.; Ruemmeli, M. H.; Ding, F.; Zhang, Y.; Liu, Z. Adv. Mater. doi: 10.1002/adma.201504229
-
[44]
(44) Bhaviripudi, S.; Jia, X.; Dresselhaus, M. S.; Kong, J. Nano Lett. 2010, 10, 4128. doi: 10.1021/nl102355e
-
[45]
(45) Zhao, P.; Kumamoto, A.; Kim, S.; Chen, X.; Hou, B.; Chiashi, S.; Einarsson, E.; Ikuhara, Y.; Maruyama, S. J. Phys. Chem. C 2013, 117, 10755. doi: 10.1021/jp400996s
-
[46]
(46) Zhao, P.; Kim, S.; Chen, X.; Einarsson, E.; Wang, M.; Song, Y.; Wang, H.; Chiashi, S.; Xiang, R.; Maruyama, S. ACS Nano 2014, 8, 11631. doi: 10.1021/nn5049188
-
[47]
(47) Chen, J.; Guo, Y.; Jiang, L.; Xu, Z.; Huang, L.; Xue, Y.; Geng, D.; Wu, B.; Hu, W.; Yu, G.; Liu, Y. Adv. Mater. 2014, 26, 1348. doi: 10.1002/adma.201304872
-
[48]
(48) Wei, D.; Lu, Y.; Han, C.; Niu, T.; Chen, W.; Wee, A. T. S. Angew. Chem. Int. Edit. 2013, 52, 14121. doi: 10.1002/anie.201306086
-
[49]
(49) Hwang, J.; Kim, M.; Campbell, D.; Alsalman, H. A.; Kwak, J. Y.; Shivaraman, S.; Woll, A. R.; Singh, A. K.; Hennig, R. G.; Gorantla, S.; Ruemmeli, M. H.; Spencer, M. G. ACS Nano 2013, 7, 385. doi: 10.1021/nn305486x
-
[50]
(50) Chen, J.; Wen, Y.; Guo, Y.; Wu, B.; Huang, L.; Xue, Y.; Geng, D.; Wang, D.; Yu, G.; Liu, Y. J. Am. Chem. Soc. 2011, 133, 17548. doi: 10.1021/ja2063633
-
[51]
(51) Sun, J.; Gao, T.; Song, X.; Zhao, Y.; Lin, Y.; Wang, H.; Ma, D.; Chen, Y.; Xiang, W.; Wing, J.; Zhang, Y.; Liu, Z. J. Am. Chem. Soc. 2014, 136, 6574. doi: 10.1021/ja5022602
-
[52]
(52) Teng, P. Y.; Lu, C. C.; Akiyama-Hasegawa, K.; Lin, Y. C.; Yeh, C. H.; Suenaga, K.; Chiu, P. W. Nano Lett. 2012, 12, 1379. doi: 10.1021/nl204024k
-
[53]
(53) Kim, H.; Song, I.; Park, C.; Son, M.; Hong, M.; Kim, Y.; Kim, J. S.; Shin, H. J.; Baik, J.; Choi, H. C. ACS Nano 2013, 7, 6575. doi: 10.1021/nn402847w
-
[54]
(54) Dong, X.; Wang, P.; Fang, W.; Su, C. Y.; Chen, Y. H.; Li, L. J.; Huang, W.; Chen, P. Carbon 2011, 49, 3672. doi: 10.1016/j.carbon.2011.04.069
-
[55]
(55) Tan, L.; Zeng, M.; Wu, Q.; Chen, L.; Wang, J.; Zhang, T.; Eckert, J.; Ruemmeli, M. H.; Fu, L. Small 2015, 11, 1840. doi: 10.1002/smll.201402427
-
[56]
(56) Geng, D.; Wu, B.; Guo, Y.; Huang, L.; Xue, Y.; Chen, J.; Yu, G.; Jiang, L.; Hu, W.; Liu, Y. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 7992.
-
[57]
(57) Zeng, M.; Tan, L.; Wang, J.; Chen, L.; Ruemmeli, M. H.; Fu, L. Chem. Mater. 2014, 26, 3637. doi: 10.1021/cm501571h
-
[58]
(58) Wang, J.; Zeng, M.; Tan, L.; Dai, B.; Deng, Y.; Rümmeli, M.; Xu, H.; Li, Z.; Wang, S.; Peng, L.; Eckert, J.; Fu, L. Sci. Rep. 2013, 3, 2670.
-
[59]
(59) Guqiao, D.; Yun, Z.; Shumin, W.; Qian, G.; Lei, S.; Tianru, W.; Xiaoming, X.; Mianheng, J. Carbon 2013, 53, 321. doi: 10.1016/j.carbon.2012.11.018
-
[60]
(60) Munoz, R.; Gomez-Aleixandre, C. J. Phys. D: Appl. Phys. 2014, 47.
-
[61]
(61) Zhang, L.; Shi, Z.; Wang, Y.; Yang, R.; Shi, D.; Zhang, G. Nano Res. 2011, 4, 315. doi: 10.1007/s12274-010-0086-5
-
[62]
(62) Medina, H.; Lin, Y. C.; Jin, C.; Lu, C. C.; Yeh, C. H.; Huang, K. P.; Suenaga, K.; Robertson, J.; Chiu, P. W. Adv. Funct. Mater. 2012, 22, 2123. doi: 10.1002/adfm.201102423
-
[63]
(63) Yang, C.; Bi, H.; Wan, D.; Huang, F.; Xie, X.; Jiang, M. J. Mater. Chem. A 2013, 1, 770. doi: 10.1039/C2TA00234E
-
[64]
(64) Zhu, M. Y.; Outlaw, R. A.; Bagge-Hansen, M.; Chen, H. J.; Manos, D. M. Carbon 2011, 49, 2526. doi: 10.1016/j.carbon.2011.02.024
-
[65]
(65) Wang, J.; Fang, Z.; Zhu, H.; Gao, B.; Garner, S.; Cimo, P.; Barcikowski, Z.; Mignerey, A.; Hu, L. Thin Solid Films 2014, 556, 13. doi: 10.1016/j.tsf.2013.12.060
-
[66]
(66) Sui, D.; Huang, Y.; Huang, L.; Liang, J.; Ma, Y.; Chen, Y. Small 2011, 7, 3186. doi: 10.1002/smll.v7.22
-
[67]
(67) Ryoo, S. R.; Kim, Y. K.; Kim, M. H.; Min, D. H. ACS Nano 2010, 4, 6587. doi: 10.1021/nn1018279
-
[68]
(68) Huang, X.; Qi, X.; Boey, F.; Zhang, H. Chem. Soc. Rev. 2012, 41, 666. doi: 10.1039/C1CS15078B
-
[69]
(69) Chang, H.; Wu, H. Energy Environ. Sci. 2013, 6, 3483.
-
[1]
-
-
-
[1]
Chaolin Mi , Yuying Qin , Xinli Huang , Yijie Luo , Zhiwei Zhang , Chengxiang Wang , Yuanchang Shi , Longwei Yin , Rutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011
-
[2]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[3]
Anbang Du , Yuanfan Wang , Zhihong Wei , Dongxu Zhang , Li Li , Weiqing Yang , Qianlu Sun , Lili Zhao , Weigao Xu , Yuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027
-
[4]
Tao Xu , Wei Sun , Tianci Kong , Jie Zhou , Yitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021
-
[5]
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029
-
[6]
Yue Zhang , Bao Li , Lixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038
-
[7]
Ling Zhang , Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075
-
[8]
Naiying Fan , Chuanli Qin , Guo Zhang , Bin Wang , Yan Wang , Bing Zheng , Yichun Qu , Zhiyao Sun , Guanghui An . Case Design of Course Ideological and Political Education in Chemical Experiment Safety: the Safe Use of Common Laboratory Instruments and Glassware. University Chemistry, 2024, 39(2): 242-247. doi: 10.3866/PKU.DXHX202309061
-
[9]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[10]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[11]
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
-
[12]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[13]
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366
-
[14]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013
-
[15]
Xuechen Hu , Qiuying Xia , Fan Yue , Xinyi He , Zhenghao Mei , Jinshi Wang , Hui Xia , Xiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046
-
[16]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[17]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[18]
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024
-
[19]
Jiahao Lu , Xin Ming , Yingjun Liu , Yuanyuan Hao , Peijuan Zhang , Songhan Shi , Yi Mao , Yue Yu , Shengying Cai , Zhen Xu , Chao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045
-
[20]
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(648)
- HTML views(80)