Citation:
LIU Xing-Rui, YAN Hui-Juan, WANG Dong, WAN Li-Jun. In situ AFM Investigation of Interfacial Morphology of Single Crystal Silicon Wafer Anode[J]. Acta Physico-Chimica Sinica,
;2016, 32(1): 283-289.
doi:
10.3866/PKU.WHXB201511132
-
The interfacial morphology of a single crystal Si wafer anode during the first discharging-charging cycle was investigated using in situ atomic force microscopy (AFM). The solid-electrolyte interphase (SEI) began to grow from 1.5 V, developing rapidly between 1.25 and 1.0 V, and slowed down after 0.6 V. The morphology suggested that the SEI had a layered structure. The outer layer of SEI was soft and easy to be scraped off during the AFM tip scanning. The underlayer of SEI had granular features. During the lithiation process, the Si surface became grainy because of the insertion of Li ions. After the first cycle, the Si surface was completely covered by inhomogeneous SEI. The thickness of the SEI was approximately 10-40 nm.
-
-
-
[1]
(1) Palacin, M. R. Chem. Soc. Rev. 2009, 38, 2565. doi: 10.1039/B820555H
-
[2]
(2) Beattie, S. D.; Larcher, D.; Morcrette, M.; Simon, B.; Tarascon, J. M. J. Electrochem. Soc. 2008, 155, A158. doi: 10.1149/1.2817828
-
[3]
(3) Wu, H.; Cui, Y. Nano Today 2012, 7, 414. doi: 10.1016/j.nantod.2012.08.004
-
[4]
(4) Kong, F.; Kostecki, R.; Nadeau, G.; Song, X.; Zaghib, K.; Kinoshita, K.; McLarnon, F. J. Power Sources 2001, 97, 58. doi: 10.1016/S0378-7753(01)00588-2
-
[5]
(5) Wu, H.; Zheng, G.; Liu, N.; Carney, T. J.; Yang, Y.; Cui, Y. Nano Lett. 2012, 12, 904. doi: 10.1021/nl203967r
-
[6]
(6) Szczech, J. R.; Jin, S. Energy Environ. Sci. 2011, 4, 56. doi: 10.1039/C0EE00281J
-
[7]
(7) Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y. ACS Nano 2012, 6, 1522. doi: 10.1021/nn204476h
-
[8]
(8) McDowell, M. T.; Lee, S. W.; Harris, J. T.; Korgel, B. A.; Wang, C.; Nix, W. D.; Cui, Y. Nano Lett. 2013, 13, 758. doi: 10.1021/nl3044508
-
[9]
(9) Chen, D.; Mei, X.; Ji, G.; Lu, M.; Xie, J.; Lu, J.; Lee, J. Y. Angew. Chem. Int. Edit. 2012, 51, 2409. doi: 10.1002/anie.201107885
-
[10]
(10) Zhou, X.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Chem. Commun. 2012, 48, 2198. doi: 10.1039/c2cc17061b
-
[11]
(11) Li, X.; Meduri, P.; Chen, X.; Qi, W.; Engelhard, M. H.; Xu, W.; Ding, F.; Xiao, J.; Wang, W.; Wang, C. J. Mater. Chem. 2012, 22, 11014. doi: 10.1039/C2JM31286G
-
[12]
(12) Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C.; Cui, Y. Nano Lett. 2012, 12, 3315. doi: 10.1021/nl3014814
-
[13]
(13) Xu, K. Chem. Rev. 2014, 114, 11503. doi: 10.1021/cr500003w
-
[14]
(14) Nie, M.; Chalasani, D.; Abraham, D. P.; Chen, Y.; Bose, A.; Lucht, B. L. J. Phys. Chem. C 2013, 117, 1257. doi: 10.1021/jp3118055
-
[15]
(15) Philippe, B.; Dedryvère, R.; Gorgoi, M.; Rensmo, H.; Gonbeau, D.; Edström, K. Chem. Mater. 2013, 25, 394. doi: 10.1021/cm303399v
-
[16]
(16) Arreaga-Salas, D. E.; Sra, A. K.; Roodenko, K.; Chabal, Y. J.; Hinkle, C. L. J. Phys. Chem. C 2012, 116, 9072. doi: 10.1021/jp300787p
-
[17]
(17) Sacci, R. L.; Dudney, N. J.; More, K. L.; Parent, L. R.; Arslan, I.; Browning, N. D.; Unocic, R. R. Chem. Commun. 2014, 50, 2104. doi: 10.1039/c3cc49029g
-
[18]
(18) Baddour-Hadjean, R.; Pereira-Ramos, J. P. Chem. Rev. 2009, 110, 1278. doi: 10.1021/cr800344k
-
[19]
(19) Li, J. T.; Zhou, Z. Y.; Broadwell, I.; Sun, S. G. Accounts Chem. Res. 2012, 45, 485. doi: 10.1021/ar200215t
-
[20]
(20) Rhodes, K.; Kirkham, M.; Meisner, R.; Parish, C. M.; Dudney, N.; Daniel, C. Rev. Sci. Instrum. 2011, 82, 075107. doi: 10.1063/1.3607961
-
[21]
(21) Sugimoto, Y.; Pou, P.; Abe, M.; Jelinek, P.; Pérez, R.; Morita, S.; Custance, Ó. Nature 2007, 446, 64. doi: 10.1038/nature05530
-
[22]
(22) Morita, S. J. Electron Microsc. 2011, 60, S199. doi: 10.1093/jmicro/dfr047
-
[23]
(23) Jeong, S. K.; Inaba, M.; Abe, T.; Ogumi, Z. J. Electrochem. Soc. 2001, 148, A989.
-
[24]
(24) Deng, X.; Liu, X.; Yan, H.; Wang, D.; Wan, L. Sci. China Chem. 2013, 57, 178. doi: 10.1007/s11426-013-4988-4
-
[25]
(25) Liu, X. R.; Wang, L.; Wan, L. J.; Wang, D. ACS Appl. Mater. Interfaces 2015, 7, 9573. doi: 10.1021/acsami.5b01024
-
[26]
(26) Demirocak, D. E.; Bhushan, B. J. Colloid Interface Sci. 2014, 423, 151. doi: 10.1016/j.jcis.2014.02.035
-
[27]
(27) Liu, X. R.; Wang, D.; Wan, L. J. Sci. Bull. 2015, 60, 839. doi: 10.1007/s11434-015-0763-6
-
[28]
(28) Domi, Y.; Ochida, M.; Tsubouchi, S.; Nakagawa, H.; Yamanaka, T.; Doi, T.; Abe, T.; Ogumi, Z. J. Phys. Chem. C 2011, 115, 25484. doi: 10.1021/jp2064672
-
[29]
(29) Liu, R. R.; Deng, X.; Liu, X. R.; Yan, H. J.; Cao, A. M.; Wang, D. Chem. Commun. 2014, 50, 15756. doi: 10.1039/C4CC07290A
-
[30]
(30) Beaulieu, L. Y.; Hatchard, T. D.; Bonakdarpour, A.; Fleischauer, M. D.; Dahn, J. R. J. Electrochem. Soc. 2003, 150, A1457. doi: 10.1149/1.1613668
-
[31]
(31) Martin, L.; Martinez, H.; Ulldemolins, M.; Pecquenard, B.; Le Cras, F. Solid State Ionics 2012, 215, 36. doi: 10.1016/j.ssi.2012.03.042
-
[32]
(32) He, Y.; Yu, X.; Li, G.; Wang, R.; Li, H.; Wang, Y.; Gao, H.; Huang, X. J. Power Sources 2012, 216, 131. doi: 10.1016/j.jpowsour.2012.04.105
-
[33]
(33) Becker, C. R.; Strawhecker, K. E.; McAllister, Q. P.; Lundgren, C. A. ACS Nano 2013, 7, 9173. doi: 10.1021/nn4037909
-
[34]
(34) McAllister, Q. P.; Strawhecker, K. E.; Becker, C. R.; Lundgren, C. A. J. Power Sources 2014, 257, 380. doi: 10.1016/j.jpowsour.2014.01.077
-
[35]
(35) Liu, X. R.; Deng, X.; Liu, R. R.; Yan, H. J.; Guo, Y. G.; Wang, D.; Wan, L. J. ACS Appl. Mater. Interfaces 2014, 6, 20317. doi: 10.1021/am505847s
-
[36]
(36) Zheng, J.; Zheng, H.; Wang, R.; Ben, L.; Lu, W.; Chen, L.; Li, H. Phys. Chem. Chem. Phys. 2014, 16, 13229. doi: 10.1039/c4cp01968g
-
[37]
(37) Tokranov, A.; Sheldon, B. W.; Li, C.; Minne, S.; Xiao, X. ACS Appl. Mater. Interfaces 2014, 6, 6672. doi: 10.1021/am500363t
-
[38]
(38) Gosalvez, M.; Nieminen, R. New J. Phys. 2003, 5, 100. doi: http://dx.doi.org/10.1088/1367-2630/5/1/400
-
[39]
(39) Sato, K.; Shikida, M.; Yamashiro, T.; Tsunekawa, M.; Ito, S. Sens. Actuators A 1999, 73, 122. doi: 10.1016/S0924-4247(98)00270-2
-
[40]
(40) Guzman, H. V.; Perrino, A. P.; Garcia, R. ACS Nano 2013, 7, 3198. doi: 10.1021/nn4012835
-
[41]
(41) Alsteens, D.; Dupres, V.; Yunus, S.; Latgé, J. P.; Heinisch, J. J. J.; Dufréne, Y. F. Langmuir 2012, 28, 16738. doi: 10.1021/la303891j
-
[42]
(42) Wind, R. A.; Jones, H.; Little, M. J.; Hines, M. A. J. Phys. Chem. B 2002, 106, 1557. doi: 10.1021/jp011361j
-
[43]
(43) Philipsen, H. G.; Kelly, J. J. J. Phys. Chem. B 2005, 109, 17245. doi: 10.1021/jp052595w
-
[44]
(44) Cresce, A. V.; Russell, S. M.; Baker, D. R.; Gaskell, K. J.; Xu, K. Nano Lett. 2014, 14, 1405. doi: 10.1021/nl404471v
-
[45]
(45) Leroy, S.; Martinez, H.; Dedryvere, R.; Lemordant, D.; Gonbeau, D. Appl. Surf. Sci. 2007, 253, 4895. doi: 10.1016/j.apsusc.2006.10.071
-
[1]
-
-
-
[1]
Xintong Zhu , Bin Cao , Chong Yan , Cheng Tang , Aibing Chen , Qiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096
-
[2]
Changsheng An , Tao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101
-
[3]
Zhi Dou , Huiyu Duan , Yixi Lin , Yinghui Xia , Mingbo Zheng , Zhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039
-
[4]
Hanmei Lü , Xin Chen , Qifu Sun , Ning Zhao , Xiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016
-
[5]
Jiandong Liu , Zhijia Zhang , Kamenskii Mikhail , Volkov Filipp , Eliseeva Svetlana , Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048
-
[6]
Jingshuo Zhang , Yue Zhai , Ziyun Zhao , Jiaxing He , Wei Wei , Jing Xiao , Shichao Wu , Quan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006
-
[7]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019
-
[8]
Yu Peng , Jiawei Chen , Yue Yin , Yongjie Cao , Mochou Liao , Congxiao Wang , Xiaoli Dong , Yongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087
-
[9]
Da Wang , Xiaobin Yin , Jianfang Wu , Yaqiao Luo , Siqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029
-
[10]
Xinran Zhang , Siqi Liu , Yichi Chen , Qingli Zou , Qinghong Xu , Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104
-
[11]
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
-
[12]
Ke Qiu , Fengmei Wang , Mochou Liao , Kerun Zhu , Jiawei Chen , Wei Zhang , Yongyao Xia , Xiaoli Dong , Fei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036
-
[13]
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
-
[14]
Qiuyang LUO , Xiaoning TANG , Shu XIA , Junnan LIU , Xingfu YANG , Jie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110
-
[15]
Hongxia Yan , Rui Wu , Weixu Feng , Yan Zhao , Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010
-
[16]
Haiyu Zhu , Zhuoqun Wen , Wen Xiong , Xingzhan Wei , Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078
-
[17]
Jiashuang Lu , Xiaoyang Xu , Youqing He , Mingyue Wu , Ruixin Shi , Wenfang Yu , Hang Lu , Ji Liu , Qingzeng Zhu . 生命健康中的有机硅高分子. University Chemistry, 2025, 40(8): 169-180. doi: 10.12461/PKU.DXHX202409143
-
[18]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[19]
Jiaqi AN , Yunle LIU , Jianxuan SHANG , Yan GUO , Ce LIU , Fanlong ZENG , Anyang LI , Wenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072
-
[20]
Wenke ZHENG , Ce LIU , Wei CHEN , Hongshan KE , Fanlong ZENG , Yibo LEI , Anyang LI , Wenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(512)
- HTML views(36)