Citation:
BU Xiao-Xue, FAN Ben-Han, WEI Jie, XING Nan-Nan, MA Xiao-Xue, GUAN Wei. Thermodynamic Properties and Predicting the Surface Tension of Pyridinium-Based Ionic Liquids of [C6py][DCA] Using a New Eötvös Equation[J]. Acta Physico-Chimica Sinica,
;2016, 32(1): 267-273.
doi:
10.3866/PKU.WHXB201510303
-
The pyridinium-based ionic liquids [C6py][DCA] (N-hexyl-pyridinium dicyanamide) was prepared and characterized using 1H and 13C nuclear magnetic responancec (NMR) spectroscopies, Fourier transform infrared (FT-IR) spectroscopy, and differential scanning calorimetry (DSC). The density (ρ), surface tension (γ), and refractive indices (nD) were measured at the temperature range from 288.15 to 338.15 K. Molecular volume (Vm), energy of surface (Ea), molar polarization (Rm), and polarization coefficient of [C6py][DCA] (αp) were calculated from the experimental data. Ea, Rm, and αp were approximately temperature-independent. The concept of molar surface Gibbs free energy (gs) was conceived, for which a new Eötvös equation was derived. The gs, critical temperature (Tc), and Eötvös empirical parameter related to polarity (kE) were also obtained. The new Eötvös equation was used to predict the surface tension and the predicted values of [C6py][DCA] are in close agreement with the corresponding experimental ones.
-
-
-
[1]
(1) Seddon, K. R. J. Chem. Tech. Biotechnol. 1997, 68 (4), 351.
-
[2]
(2) Tao, G. H.; He, L.; Liu, W. S.; Xu, L.; Xiong, W.; Wang, T.; Kou, Y. Green Chem. 2006, 8, 639. doi: 10.1039/b600813e
-
[3]
(3) Muhammad, N.; Omar, W. N.; Man, Z.; Bustam, M. A.; Rafiq, S.; Uemura, Y. Ind. Eng. Chem. Res. 2012, 51 (5), 2280. doi: 10.1021/ie2014313
-
[4]
(4) Rout, A.; Binnemans, K. Ind. Eng. Chem. Res. 2014, 53 (8), 6500.
-
[5]
(5) Zhong, H. X.; Zhao, C. B.; Luo, H.; Zhang, L. Z. Acta Phys. -Chim. Sin. 2012, 28 (11), 2641. [仲皓想, 赵春宝, 骆浩, 张灵志. 物理化学学报, 2012, 28 (11), 2641.] doi: 10.3866/PKU.WHXB201207181
-
[6]
(6) Wang, H.; Xu, X. Q.; Shi, J. F.; Xu, G. Acta Phys. -Chim. Sin. 2013, 29 (3), 525. [王海, 徐雪青, 史继富, 徐刚. 物理化学学报, 2013, 29 (3), 525.] doi: 10.3866/PKU.WHXB201301091
-
[7]
(7) Zhao, D. B.; Fei, Z. F.; Geldbach, T. J.; Scopelliti, R.; Dyson, P. J. J. Am. Chem. Soc. 2004, 126 (48), 15876. doi: 10.1021/ja0463482
-
[8]
(8) Yunus, N. M.; Abdul Mutalib, M. I.; Man, Z.; Bustam, M. A.; Murugesan, T. Chemical Engineering Journal 2012, 189, 94.
-
[9]
(9) Calvar, N.; Gomez, E.; Macedo, E. A.; Dominguez, A. Thermochimica Acta 2013, 565, 178. doi: 10.1016/j.tca.2013.05.007
-
[10]
(10) Crosthwaite, J. M.; Muldoon, M. J.; Dixon, J. K.; Anderson, J. L.; Brennecke, J. F. Journal of Chemical Thermodynamics 2005, 37 (6), 559. doi: 10.1016/j.jct.2005.03.013
-
[11]
(11) Xu, F.; Gao, H. S.; Dong, H. F.; Wang, Z. L.; Zhang, X. P.; Ren, B. Z.; Zhang, S. J. Fluid Phase Equilibria 2014, 365, 80. doi: 10.1016/j.fluid.2013.12.020
-
[12]
(12) Ye, Q.; Gao, T. T.; Wan, F.; Yu, B.; Pei, X. M.; Zhou, F.; Xue, Q. J. Journal of Materials Chemistry 2012, 22 (26), 13123. doi: 10.1039/c2jm31527k
-
[13]
(13) Zeng, S. J.; Gao, H. S.; Zhang, X. C.; Dong, H. F.; Zhang, X. P.; Zhang, S. J. Chemical Engineering Journal 2014, 251, 248. doi: 10.1016/j.cej.2014.04.040
-
[14]
(14) Jie, X. M.; Chau, J.; Obuskovic, G.; Obuskovic, G.; Sirkar, K. K. Industrial & Engineering Chemistry Research 2014, 53 (8), 3305. doi: 10.1021/ie403596b
-
[15]
(15) Schneider, S.; Hawkins, T.; Rosander, M.; Vaghjiani, G.; Chambreau, S.; Drake, G. Energy & Fuels 2008, 22 (4), 2871. doi: 10.1021/ef800286b
-
[16]
(16) Bedrov, D.; Borodin, O. Journal of Physical Chemistry B 2010, 114 (40), 12802. doi: 10.1021/jp1049827
-
[17]
(17) Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M. A. B. H.; Watanabe, M. Journal of Physical Chemistry B 2004, 108 (42), 16593. doi: 10.1021/jp047480r
-
[18]
(18) Krossing, I.; Slattery, J. M.; Daguenet, C.; Dyson, P. J.; Oleinikova, A.; Weingärtner, H. J. Am. Chem. Soc. 2006, 128 (41), 13427.
-
[19]
(19) Jenkins, H. D. B.; Glasser, L. Inorganic Chemistry 2002, 41 (17), 4378. doi: 10.1021/ic020222t
-
[20]
(20) Jenkins, H. D. B.; Glasser, L. Inorganic Chemistry 2003, 42 (26), 8702. doi: 10.1021/ic030219p
-
[21]
(21) Ma, X. X.; Wei, J.; Zhang, Q. B.; Tian, F.; Feng, Y. Y.; Guan, W. Ind. Eng. Chem. Res. 2013, 52, 9490. doi: 10.1021/ie401130d
-
[22]
(22) Wei, J.; Chang, C.; Zhang, Y. Y.; Hou, S. Y.; Fang, D. W.; Guan, W. J. Chem. Thermodynamics 2015, 90, 310.
-
[23]
(23) Wei, J.; Zhang, Q. B.; Tian, F.; Zheng, L.; Guan, W.; Yang, J. Z. Fluid Phase Equilibria 2014, 371, 1. doi: 10.1016/j.fluid.2014.03.011
-
[24]
(24) Guan, W.; Zhang, Q. B.; Ma, X. X.; Wei, J.; Pan, Y.; Yang, J. Z. Fluid Phase Equilibria 2013, 360, 63. doi: 10.1016/j.fluid.2013.09.032
-
[25]
(25) Ma, X. X.; Wei, J.; Guan, W.; Pan, Y.; Zheng, L.; Wu, Y.; Yang, J. Z. J. Chem. Thermodynamics 2015, 89, 51. doi: 10.1016/j.jct.2015.02.025
-
[26]
(26) Guan, W.; Wang, C. X.; Wang, Z.; Chen, S. P.; Gao, S. L. Acta Chim. Sin. 2011, 69 (11), 1280. [关伟, 王彩霞, 王珍, 陈三平, 高胜利. 化学学报, 2011, 69 (11), 1280.]
-
[27]
(27) Earle, M. J.; Gordon, C. M.; Plechkova, N. V.; Seddon, K. R.; Welton, T. Analytical Chemistry 2007, 79 (2), 758. doi: 10.1021/ac061481t
-
[28]
(28) Gordon, C. M.; Muldoon, M. J.; Wagner, M. Ionic Liquids in Synthesis; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2002.
-
[29]
(29) Zhang, S. G.; Qi, X. J.; Ma, X. Y.; Lu, L. J.; Deng, Y. Q. J. Phys. Chem. B 2010, 114 (11), 3912. doi: 10.1021/jp911430t
-
[30]
(30) Lide, D. R. Handbook of Chemistry and Physics, 82nd ed.; CRC Press: Boca Raton, FL, 2001.
-
[31]
(31) Glasser, L. Thermochimica Acta 2004, 421 (1–2), 87. doi: 10.1016/j.tca.2004.03.015
-
[32]
(32) Adamson, A. W. Physical Chemistry of Surfaces, 3rd ed.; John Wiley: New York, 1976; translated by Gu, T. R. Science Press: Beijing, 1986. [Adamson, A. W. 表面物理化学. 第三版. 顾惕人译. 北京: 科学出版社, 1986.]
-
[33]
(33) Ersfeld, B.; Felderhof, B. U. Phys. Rev. E 1998, 57 (1), 1118. doi: 10.1103/PhysRevE.57.1118
-
[34]
(34) Tong, J.; Liu, Q. S.; Zhang, P.; Yang, J. Z. J. Chem. Eng. Data 2007, 52 (4), 1497. doi: 10.1021/je700102g
-
[1]
-
-
-
[1]
Yongmin Zhang , Shuang Guo , Mingyue Zhu , Menghui Liu , Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026
-
[2]
Ruilin Han , Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023
-
[3]
Meng Lin , Heng Zhang , Shiling Yuan . Exploring a Combined Theory-Practice-Simulation Teaching Model in Physical Chemistry: A Case Study of Surface Tension. University Chemistry, 2025, 40(4): 189-194. doi: 10.12461/PKU.DXHX202407053
-
[4]
Shu'e Song , Xiaokui Wang , Yongmei Liu , Wanchun Zhu , Hong Yuan , Fuping Tian , Yunshan Bai , Yunchao Li , Li Wang , Zhongyun Wu , Yuan Chun , Jianrong Zhang , Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Viscosity, Density and Optical Properties. University Chemistry, 2025, 40(5): 148-156. doi: 10.12461/PKU.DXHX202503026
-
[5]
Yutong Dong , Huiling Xu , Yucheng Zhao , Zexin Zhang , Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022
-
[6]
Honglian Liang , Xiaozhe Kuang , Fuping Wang , Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073
-
[7]
Liyang ZHANG , Dongdong YANG , Ning LI , Yuanyu YANG , Qi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079
-
[8]
Qiqi Li , Su Zhang , Yuting Jiang , Linna Zhu , Nannan Guo , Jing Zhang , Yutong Li , Tong Wei , Zhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009
-
[9]
Yangrui Xu , Yewei Ren , Xinlin Liu , Hongping Li , Ziyang Lu . NH2-UIO-66 Based Hydrophobic Porous Liquid with High Mass Transfer and Affinity Surface for Enhancing CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-0. doi: 10.3866/PKU.WHXB202403032
-
[10]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[11]
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366
-
[12]
Hongjie SHEN , Haozhe MIAO , Yuhe YANG , Yinghua LI , Deguang HUANG , Xiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009
-
[13]
Xiaotong LU , Pan ZHANG , Zijie ZHAO , Lei HUANG , Hongwei ZUO , Lili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073
-
[14]
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
-
[15]
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
-
[16]
Yameen Ahmed , Xiangxiang Feng , Yuanji Gao , Yang Ding , Caoyu Long , Mustafa Haider , Hengyue Li , Zhuan Li , Shicheng Huang , Makhsud I. Saidaminov , Junliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057
-
[17]
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393
-
[18]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[19]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[20]
Ruiqin Feng , Ye Fan , Yun Fang , Yongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(469)
- HTML views(33)