Citation:
FENG Chang, DENG Xiao-Yan, NI Xiao-Xiao, LI Wei-Bing. Fabrication of Carbon Dots Modified Porous ZnO Nanorods with Enhanced Photocatalytic Activity[J]. Acta Physico-Chimica Sinica,
;2015, 31(12): 2349-2357.
doi:
10.3866/PKU.WHXB201510281
-
Porous ZnO nanorods that displayed excellent photocatalytic degradation of organic pollutants (RhB and phenol) were prepared via a solvent thermal method followed by surface modification with carbon dots (C-dots) using a deposition method. The photocatalysts were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible (UV-Vis) spectroscopy. The degradation of the organic pollutants using the nanorods was tested under Xe-light illumination and was enhanced following C-dot modification. Nanorods that were modified by the C-dots at a mass fraction of 1.2% (CZn1.2) exhibited the highest photocatalytic activity for the degradation of RhB, which was 2.5 times of the pure porous ZnO nanorods. Additionally, the modified nanorods with strangely oxidation ability could catalyze the degradation of phenol by open-rings reaction under Xe-light illumination. The improved photocatalytic activity was attributed to the effective separation of the photogenerated electrons and holes, in which the C-dots served as the receptor of the photogenerated electrons.
-
-
-
[1]
(1) Maeda, K.; Teramura, K.; Lu, D.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Nature 2006, 440, 295. doi: 10.1038/440295a
-
[2]
(2) Bu, Y. Y.; Chen, Z. Y. RSC Adv. 2014, 4, 45397. doi: 10.1039/C4RA06641C
-
[3]
(3) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253. doi: 10.1039/B800489G
-
[4]
(4) Xie, J.; Wang, H.; Duan, M. Acta Phys. -Chim. Sin. 2011, 27, 193. [谢娟, 王虎, 段明. 物理化学学报, 2011, 27, 193.] doi: 10.3866/PKU.WHXB20110124
-
[5]
(5) Li, D. H.; Yang, D. J.; Quan, F. Y.; Wang, B. B.; Zhang, L. J.; Zhu, S. S.; Wang, L. J. Nano Reports 2015, 1, 29.
-
[6]
(6) Liu, H.; Wu, X. F.; Li, X. Q.; Wang, J.; Fan, X. M. Chin. J. Catal. 2014, 35, 1997. [刘红, 邬小凤, 李湘奇, 王婕, 范希梅. 催化学报, 2014, 35, 1997.] doi: 10.1016/S1872-2067(14)60198-4
-
[7]
(7) Xu, F.; Sun, L. Energy Environ. Sci. 2011, 4, 818. doi: 10.1039/C0EE00448K
-
[8]
(8) Huang, J.; Yin, Z. G.; Zheng, Q. D. Energy Environ. Sci. 2011, 4, 3861. doi: 10.1039/c1ee01873f
-
[9]
(9) Shen, G.; Cho, J. H.; Yoo, J. K.; Yi, G.; Lee, C. J. J. Phys. Chem. B 2005, 109, 5491. doi: 10.1021/jp045237m
-
[10]
(10) Li, X. Q.; Fan, Q. F.; Li, G. L.; Huang, Y. H.; Gao, Z.; Fan, X. M.; Zhang, C. L.; Zhou, Z. W. Acta Phys. -Chim. Sin. 2015, 31, 783. [李湘奇, 范庆飞, 李广立, 黄瑶翰, 高照, 范希梅, 张朝良, 周祚万. 物理化学学报, 2015, 31, 783.] doi: 10.3866/PKU.WHXB201502062
-
[11]
(11) Zhu, C. Q.; Lu, B. G.; Su, Q.; Xie, E. Q.; Lan, W. Nanoscale 2012, 4, 3060. doi: 10.1039/c2nr12010k
-
[12]
(12) Samadi, M.; Shivaee, H. A.; Zanetti, M.; Pourjavadi, A.; Moshfegh, A. J. Mol. Catal. A: Chem. 2012, 359, 42. doi: 10.1016/j.molcata.2012.03.019
-
[13]
(13) Bu, Y. Y.; Chen, Z. Y. J. Power Sources 2014, 272, 647. doi: 10.1016/j.jpowsour.2014.08.127
-
[14]
(14) Sun, X.; Li, Q.; Jiang, J. C.; Mao, Y. B. Nanoscale 2014, 6, 8769. doi: 10.1039/C4NR01146E
-
[15]
(15) Sin, J. C.; Lam, S. M.; Satoshi, I.; Lee, K. T.; Mohamed, A. R. Appl. Catal. B 2014, 148-149, 258.
-
[16]
(16) Wang, X. W.; Yin, L. C.; Liu, G.; Wang, L. Z.; Saito, R.; Lu, G. Q.; Cheng, H. M. Energy Environ. Sci. 2011, 4, 3976. doi: 10.1039/c0ee00723d
-
[17]
(17) Zhang, Y.; Lin, S.; Zhang, Y.; Song, X. M. Acta Phys. -Chim. Sin. 2013, 29, 2399. [张宇, 林申, 张钰, 宋溪明. 物理化学学报, 2013, 29, 2399.] doi: 10.3866/PKU.WHXB201309061
-
[18]
(18) Wu, L. L.; Tian, R. X.; Zhao, Q.; Chang, Q.; Hu, S. L. Chem. J. Chin. Univ. 2014, 35, 717. [武玲玲, 田瑞雪, 赵清, 常青, 胡胜亮. 高等学校化学学报, 2014, 35, 717.]
-
[19]
(19) Sun, X.; Tuo, J. Q.; Yang, W. Y.; Yang, D. J. Nano Reports 2015, 2, 51.
-
[20]
(20) Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, C. H.; Yang, X.; Lee, S. T. Angew. Chem. Int. Edit. 2010, 49, 4430. doi: 10.1002/anie.200906154
-
[21]
(21) Ming, H.; Ma, Z.; Liu, Y.; Pan, K. M.; Yu, H.; Wang, F.; Kang, Z. H. Dalton Trans. 2012, 41, 9526. doi: 10.1039/c2dt30985h
-
[22]
(22) De, B.; Voit, B.; Karak, N. RSC Adv. 2014, 102, 58453.
-
[23]
(23) Zhang, H. C.; Huang, H.; Ming, H.; Li, H. T.; Zhang, L. L.; Liu, Y.; Kang, Z. H. J. Mater. Chem. 2012, 22, 10501. doi: 10.1039/c2jm30703k
-
[24]
(24) Li, H. T.; Kang, Z. H.; Liu, Y.; Lee, S. T. J. Mater. Chem. 2012, 22, 24230. doi: 10.1039/c2jm34690g
-
[25]
(25) Wang, J.; Huang, H. M.; Xu, Z. Z.; Kou, J. H.; Lu, C. H. Curr. Org. Chem. 2014, 18, 1346. doi: 10.2174/1385272819666140424214022
-
[26]
(26) Yu, W. L.; Zhang, J. F.; Peng, T. Y. Appl. Catal. B 2016, 181, 220. doi: 10.1016/j.apcatb.2015.07.031
-
[27]
(27) Jassby, D.; Farner, B. J.; Wiesner, M. Environ. Sci. Technol. 2012, 46, 6934. doi: 10.1021/es202009h
-
[28]
(28) Skompska, M.; Zarę bska, K. Electrochim. Acta 2014, 127, 467. doi: 10.1016/j.electacta.2014.02.049
-
[29]
(29) Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Science 2015, 347, 970. doi: 10.1126/science.aaa3145
-
[30]
(30) Peng, Y.; Qin, S.; Wang, W. S.; Xu, A. W. CrystEngComm 2013, 15, 6518. doi: 10.1039/c3ce40798e
-
[31]
(31) Xu, Y. G.; Xu, H.; Li, H. M.; Xia, J. X.; Liu, C. T.; Liu, L. J. Alloy. Compd. 2011, 509, 3286. doi: 10.1016/j.jallcom. 2010.11.193
-
[32]
(32) Zhang, H.; Fan, X.; Quan, X.; Chen, S.; Yu, H. Environ. Sci. Technol. 2011, 45, 5731. doi: 10.1021/es2002919
-
[33]
(33) Wen, Y.; Ding, H.; Shan, Y. Nanoscale 2011, 3, 4411. doi: 10.1039/c1nr10604j
-
[34]
(34) Dong, Y. Q.; Wang, R. X.; Li, H.; Shao, J. W.; Chi, Y. W.; Lin, X. M.; Chen, G. N. Carbon 2012, 50, 2810. doi: 10.1016/j.carbon.2012.02.046
-
[35]
(35) Peng, W. Q.; Qu, S. C.; Cong, G. W.; Wang, Z. G. Cryst. Growth Des. 2006, 6, 1518. doi: 10.1021/cg0505261
-
[36]
(36) Li, Y.; Zhang, B. P.; Zhao, J. X. J. Alloy. Compd. 2014, 586, 663. doi: 10.1016/j.jallcom.2013.10.085
-
[37]
(37) Rajbongshi, B. M.; Samdarshi, S. K. Appl. Catal. B 2014, 144, 435. doi: 10.1016/j.apcatb.2013.07.048
-
[38]
(38) Yu, X. J.; Liu, J. J.; Yu, Y. C.; Zuo, S. L.; Liu, B. S. Carbon 2014, 68, 718. doi: 10.1016/j.carbon.2013.11.053
-
[39]
(39) Su, R.; Tiruvalam, R.; He, Q.; Dimitratos, N.; Kesavan, L.; Hammond, C.; Lopez-Sanchez, J. A.; Bechstein, R.; Kiely, C. J.; Hutchings, G. J.; Besenbacher, F. ACS Nano 2012, 6, 6284. doi: 10.1021/nn301718v
-
[40]
(40) Xue, C.; Wang, T.; Yang, G. D.; Yang, B. L.; Ding, S. J. J. Mater. Chem. A 2014, 2, 7674. doi: 10.1039/c4ta01190b
-
[1]
-
-
-
[1]
Qianli Ma , Tianbing Song , Tianle He , Xirong Zhang , Huanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106
-
[2]
Bing Shen , Tongwei Yuan , Wenshuang Zhang , Yang Chen , Jiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490
-
[3]
Wenli FENG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308
-
[4]
Xue Wu , Yupeng Liu , Bingzhe Wang , Lingyun Li , Zhenjian Li , Qingcheng Wang , Quansheng Cheng , Guichuan Xing , Songnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109
-
[5]
Xinxin YU , Yongxing LIU , Xiaohong YI , Miao CHANG , Fei WANG , Peng WANG , Chongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438
-
[6]
Yuanqing Wang , Yusong Pan , Hongwu Zhu , Yanlei Xiang , Rong Han , Run Huang , Chao Du , Chengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050
-
[7]
Tong WANG , Qinyue ZHONG , Qiong HUANG , Weimin GUO , Xinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011
-
[8]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020
-
[9]
Lewang Yuan , Yaoyao Peng , Zong-Jie Guan , Yu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086
-
[10]
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071
-
[11]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044
-
[12]
Jingping Li , Suding Yan , Jiaxi Wu , Qiang Cheng , Kai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104
-
[13]
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064
-
[14]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[15]
Jiahui YU , Jixian DONG , Yutong ZHAO , Fuping ZHAO , Bo GE , Xipeng PU , Dafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1
-
[16]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026
-
[17]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014
-
[18]
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
-
[19]
Huiwei Ding , Bo Peng , Zhihao Wang , Qiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048
-
[20]
Yushan Cai , Fang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(676)
- HTML views(93)