Citation:
QI Qi, WANG Yu-Qiao, WANG Sha-Sha, QI Hao-Nan, WEI Tao, SUN Yue-Ming. Preparation of Reduced Graphene Oxide/TiO2 Nanocomposites and Their Photocatalytic Properties[J]. Acta Physico-Chimica Sinica,
;2015, 31(12): 2332-2340.
doi:
10.3866/PKU.WHXB201510202
-
P25-reduced graphene oxide nanocomposites (RGO-P25) are prepared by using a facile one-step hydrothermal method. Their structure and photoelectrical properties are characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS). The degradation effect of different addition ratios of the RGO-P25 nanocomposite on the photocatalytic degradation of methylene blue (MB) is investigated under UV and visible illumination. Results show that graphene oxide can be reduced during the hydrothermal reaction and thus, a mixed high defect P25 particles and RGO sheet composite is formed by electrostatic attraction. Band gaps of nanocomposites decreased from 3.00 to 2.27 eV with an increase in the amount of the RGO content. The electrical conductivities of the nanocomposites enhanced with an increased RGO amount. Over 80% of the initial methylene blue dye is decomposed by 1% (w, mass fraction) RGO-P25 after 30 min under either visible light or ultraviolet light. Under UV light illumination, 63% (molar fraction) of the N3 dye, cis-Ru(H2dcbpy)2(NCS)2 (H2dcbpy = 4,4'- dicarboxy-2,2'-bipyridyl), is decomposed by the 1% RGO-P25 nanocomposite. Compared with the bare P25 (75% anatase; 25% rutile), the continual addition of RGO enhances the photocatalytic activity and gives rise to the more effective separation of photogenerated electron-hole pairs.
-
Keywords:
- Graphene,
- TiO2,
- Nanocomposite,
- Hydrothermal method,
- Photocatalysis property
-
-
-
[1]
(1) Li, D.; Chen, H. C.; Li, J. H.; Zhou, B. X.; Cai, W. M. Acta Phys. -Chim. Sin. 2011, 27 (9), 2153. [李迪, 陈红冲, 李金花, 周保学, 蔡伟民. 物理化学学报, 2011, 27 (9), 2153.] doi: 10.3866/PKU.WHXB20110910
-
[2]
(2) Wu, Y. Q.; Lü, G. X.; Li, S. B. Acta Phys. -Chim. Sin. 2004, 20 (7), 755. [吴玉琪, 吕功煊, 李树本. 物理化学学报, 2004, 20 (7), 755.] doi: 10.3866/PKU.WHXB20040718
-
[3]
(3) Chu, D. B.; Yin, X. J.; Feng, D. X.; Lin, H. S.; Tian, Z. W. Acta Phys. -Chim. Sin. 2006, 22 (10), 1238. [褚道葆, 尹晓娟, 冯德香, 林华水, 田昭武. 物理化学学报, 2006, 22 (10), 1238.] doi: 10.3866/PKU.WHXB20061013
-
[4]
(4) Xu, P. C.; Liu, Y.; Wei, J. H.; Xiong, R.; Pan, C. X.; Shi, J. Acta Phys. -Chim. Sin. 2010, 26 (8), 2261. [许平昌, 柳阳, 魏建红, 熊锐, 潘春旭, 石兢. 物理化学学报, 2010, 26 (8), 2261.] doi: 10.3866/PKU.WHXB20100815
-
[5]
(5) Wang, Y. Q.; Wang, P. P.; Lu, J.; Bai, Y. C.; Gu, Y. L.; Sun, Y. M. Acta Phys. -Chim. Sin. 2015, 31 (3), 448. [王育乔, 王盼盼, 卢静, 白一超, 顾云良, 孙岳明. 物理化学学报, 2015, 31 (3), 448.] doi: 10.3866/PKU.WHXB201412302
-
[6]
(6) Yu, J. H.; Fan, M. G.; Li, B.; Dong, L. H.; Zhang, F. Y. Acta Phys. -Chim. Sin. 2015, 31 (3), 519. [于建华, 范闽光, 李斌, 董丽辉, 张飞跃. 物理化学学报, 2015, 31 (3), 519.] doi: 10.3866/PKU.WHXB201412291
-
[7]
(7) Liang, Y.; Wang, H.; Casalongue, H. S.; Chen Z.; Dai, H. J. Nano Research 2010, 3 (10), 701. doi: 10.1007/s12274-010-0033-5
-
[8]
(8) Chen, C.; Cai, W.; Long, M.; Zhou, B. X.; Wu, Y. H.; Wu, D. Y.; Feng, Y. J. ACS Nano 2010, 4 (11), 6425
-
[9]
(9) Yoo, D. H.; Cuong, T. V.; Pham, V. H.; Chuang, J. S.; Hhoa, N. T.; Kim, E. J.; Hahn, S. H. Curr. Appl. Phys. 2011, 11 (3), 805. doi: 10.1016/j.cap.2010.11.077
-
[10]
(10) Gan, Y. P.; Qin, H. P.; Huang, H.; Tao, X. Y.; Fang, J. W.; Zhang, W. Q. Acta Phys. -Chim. Sin. 2013, 29 (2), 403. [甘永平, 秦怀鹏, 黄辉, 陶新永, 方俊武, 张文魁. 物理化学学报, 2013, 29 (2), 403.] doi: 10.3866/PKU.WHXB201211022
-
[11]
(11) Loh, K. P.; Bao, Q.; Eda, G., Chhowalla, M. Nat. Chem. 2010, No. 2, 1015.
-
[12]
(12) Jahan, M.; Bao, Q.; Yang, J. X.; Loh, K. P. J. Am. Chem. Soc. 2010, 132 (41), 14487. doi: 10.1021/ja105089w
-
[13]
(13) Sakthive, S.; Kisch, H. Angew. Chem. -Int. Edit. 2003, 42 (40), 4908.
-
[14]
(14) Williams, G.; Seger, B.; Kamat, P. V. ACS Nano 2008, 2 (7), 1487. doi: 10.1021/nn800251f
-
[15]
(15) Zhang, X. Y.; Li, H. P.; Cui, X. L.; Lin, Y. H. J. Mater. Chem. 2010, No. 20, 2801.
-
[16]
(16) Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Nano Lett. 2010, 10 (3), 751. doi: 10.1021/nl904286r
-
[17]
(17) Zhang, W. X.; Cui, J. C.; Tao, C. A.; Wu, Y. G.; Li, Z. P.; Li, M.; Wen, Y. Q.; Li, G. T. Angew. Chem. -Int. Edit. 2009, 48 (32), 5864. doi: 10.1002/anie.v48:32
-
[18]
(18) Lu, J.; Yang, J. X.; Wang, J.; Lim, A.; Wang, S.; Loh, K. P. ACS Nano 2009, 3 (8), 2367. doi: 10.1021/nn900546b
-
[19]
(19) Zhou, Y.; Bao, Q.; Tang, L. A. L.; Zhong, Y. L.; Loh, K. P. Chem. Mat. 2009, 21 (13), 2950. doi: 10.1021/cm9006603
-
[20]
(20) Zhang, H.; Lv, X. J.; Li, Y. M.; Li, J. H. ACS Nano 2010, 4 (1), 380. doi: 10.1021/nn901221k
-
[21]
(21) Lv, X. J.; Fu, W. F.; Chang, H. X.; Zhao, H.; Cheng, J. S.; Zhang, G. J.; Song, Y.; Hu, C. Y.; Li, J. H. J. Math. Chem. 2012, 22 (4), 1539. doi: 10.1039/C1JM14502A
-
[22]
(22) Zhang, Y. H.; Tang, Z. R.; Fu, X. Z.; Xu, Y. J. ACS Nano. 2010, 4 (12), 7303. doi: 10.1021/nn1024219
-
[23]
(23) Akhavan, O.; Ghaderi, E. J. Phys. Chem. C 2009, 113 (47), 20214 doi: 10.1021/jp906325q
-
[24]
(24) Cheng, P.; Yang, Z.; Wang, H.; Cheng, W.; Chen, M. X.; Shangguan, W. F.; Ding, G. F. Int. J. Hydrog. Energy 2012, 37 (3), 2224. doi: 10.1016/j.ijhydene.2011.11.004
-
[25]
(25) Ren, L.; Qi, X.; Liu, Y. D.; Huang, Z. Y.; Wei, X. L.; Li, J.; Yang, L. W.; Zhong, J. X. J. Mater. Chem. 2012, 22 (23), 11765. doi: 10.1039/c2jm30457k
-
[26]
(26) Long, M.; Cong, Y.; Li, X. K.; Cui, Z. W.; Dong, Z. J.; Yuan, G. M. Acta Phys. -Chim. Sin. 2013, 29 (6), 1344. [龙梅, 丛野, 李轩科, 崔正威, 董志军, 袁观明. 物理化学学报, 2013, 29 (6), 1344.] doi: 10.3866/PKU.WHXB201303263
-
[1]
-
-
-
[1]
Chaolin Mi , Yuying Qin , Xinli Huang , Yijie Luo , Zhiwei Zhang , Chengxiang Wang , Yuanchang Shi , Longwei Yin , Rutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011
-
[2]
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
-
[3]
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
-
[4]
Anbang Du , Yuanfan Wang , Zhihong Wei , Dongxu Zhang , Li Li , Weiqing Yang , Qianlu Sun , Lili Zhao , Weigao Xu , Yuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027
-
[5]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[6]
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
-
[7]
Jiatong Li , Linlin Zhang , Peng Huang , Chengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970
-
[8]
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
-
[9]
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
-
[10]
Tao Xu , Wei Sun , Tianci Kong , Jie Zhou , Yitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021
-
[11]
Xinyue Han , Yunhan Yang , Jiayin Lu , Yuxiang Lin , Dongxue Zhang , Ling Lin , Liang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183
-
[12]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[13]
Zhangyong LIU , Lihui XU , Yue YANG , Liming WANG , Hong PAN , Xinzhe HUANG , Xueqiang FU , Yingxiu ZHANG , Meiran DOU , Meng WANG , Yi TENG . Preparation and photocatalytic performance of CsxWO3/TiO2 based on full spectral response. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1445-1464. doi: 10.11862/CJIC.20240345
-
[14]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[15]
Ruolin CHENG , Yue WANG , Xiyao NIU , Huagen LIANG , Ling LIU , Shijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424
-
[16]
Yue Zhang , Bao Li , Lixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038
-
[17]
Xueqi Yang , Juntao Zhao , Jiawei Ye , Desen Zhou , Tingmin Di , Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074
-
[18]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[19]
Jiahao Lu , Xin Ming , Yingjun Liu , Yuanyuan Hao , Peijuan Zhang , Songhan Shi , Yi Mao , Yue Yu , Shengying Cai , Zhen Xu , Chao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045
-
[20]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(564)
- HTML views(38)