Citation: PAN Shan-Shan, WANG Li-Ming. The Atmospheric Oxidation Mechanism of o-Xylene Initiated by Hydroxyl Radicals[J]. Acta Physico-Chimica Sinica, ;2015, 31(12): 2259-2268. doi: 10.3866/PKU.WHXB201510152 shu

The Atmospheric Oxidation Mechanism of o-Xylene Initiated by Hydroxyl Radicals

  • Corresponding author: WANG Li-Ming, 
  • Received Date: 5 August 2015
    Available Online: 14 October 2015

    Fund Project: 国家自然科学基金(21177041, 21477038) (21177041, 21477038)中国环境保护部公益性行业科研专项(201409019)资助项目 (201409019)

  • The atmospheric oxidation mechanism of o-xylene (oX) initiated by hydroxyl (OH) radicals has been investigated by using quantum chemistry, transition state theory, and unimolecular theory (RRKMME) calculations. Molecular structures of reactants, transition states, and products are optimized at M06- 2X/6-311++G(2df, 2p) level, and the electronic energies are calculated at the ROCBS-QB3 level. The classical transition state theory is employed to predict the rates or rate constants for all the reaction steps as well as the branching ratios of the reaction pathways. RRKM-ME calculations are employed to explore the pressure-dependence of the reaction kinetics. Under atmospheric conditions, the oxidation of o-Xylene is dominated by OH addition to the C1 and C3 positions, forming adducts oX-1-OH (R1) and oX-3-OH (R3), which will readily react with atmospheric oxygen. The reactions of R1 and R3 with O2 can proceed by irreversible H-abstraction to dimethylphenols (R3 only), or by reversible addition to form bicyclic radicals,which recombine with atmospheric oxygen to form bicyclic peroxy radicals (BPRs). BPRs will react with NO and/or HO2 in the atmosphere, forming organonitrate, hydroperoxides (ROOH), and bicyclic alkoxy radicals (BARs), of which the BARs eventually transfer to the final products, including biacetyl, butenedial, methylglyoxal, 4-oxo-2-pentenal, epoxy-2,3-butenedial, and a small amount of glyoxal. The products ROOH and methylglyoxal are considered to contribute to the formation of secondary organic aerosols. A new oxidation mechanism of oX in the atmosphere is proposed, based on the current theoretical predictions and previous experimental measurements, and the predicted product yields under high NO conditions are compared with previous experimental measurements. The effect of temperature on the oxidation mechanism is also discussed.
  • 加载中
    1. [1]

      (1) Huang, C.; Chen, C. H.; Li, L.; Cheng, Z.; Wang, H. L.; Huang, H. Y.; Streets, D. G.; Wang, Y. J.; Zhang, G. F.; Chen, Y. R. Atmos. Chem. Phys. 2011, 11, 4105.

    2. [2]

      (2) Zheng, J.; Shao, M.; Che, W.; Zhang, L.; Zhong, L.; Zhang, Y.; Street, D. Environ. Sci. Technol. 2009, 43, 8580. doi: 10.1021/es901688e

    3. [3]

      (3) Li, L.; Wang, X. M. Int. J. Environ. Res. Public Health 2012, 9, 1859. doi: 10.3390/ijerph9051859

    4. [4]

      (4) Izumi, K.; Fukuyama, T. Atmos. Environ. A 1990, 24, 1433. doi: 10.1016/0960-1686(90)90052-O

    5. [5]

      (5) Odum, J. R.; Jungkamp, T. P. W.; Griffin, R. J.; Flagan, R. C.; Seinfeld, J. H. Science 1997, 276, 96. doi: 10.1126/science.276.5309.96

    6. [6]

      (6) Borras, E.; Tortajada-Genaro, L. A. Atmospheric Environment 2012, 47, 154. doi: 10.1016/j.atmosenv.2011.11.020

    7. [7]

      (7) Martin-Reviejo, M.; Wirtz, K. Environ. Sci. Technol. 2005, 39, 1045. doi: 10.1021/es049802a

    8. [8]

      (8) Derwent, R. G.; Jenkin, M. E.; Passant, N. R.; Pilling, M. J. Environ. Sci. Policy 2007, 10, 445. doi: 10.1016/j.envsci.2007.01.005

    9. [9]

      (9) Carter, W. P. L. J. Air Waste Manage. Assoc. 1994, 44, 881.

    10. [10]

      (10) Carter, W. P. L.; Pierce, J. R.; Luo, D.; Malkina, I. L. Atmos. Environ. 1995, 29, 2499. doi: 10.1016/1352-2310(95)00149-S

    11. [11]

      (11) Hao, J. M.; Lü , Z. F.; Chu, B. W.; Wu, S.; Zhao, Z. Characterization, Experimental Study, and Modeling of Atmospheric Secondary Organic Aerosol; Science Press: Beijing, 2015. [郝吉明, 吕子峰, 楚碧武, 武山, 赵喆. 大气二次有机气溶胶污染特征及模拟研究. 北京: 科学出版社, 2015.]

    12. [12]

      (12) Henze, D. K.; Seinfeld, J. H.; Ng, N. L.; Kroll, J. H.; Fu, T. M.; Jacob, D. J.; Heald, C. L. Atmos. Chem. Phys. 2008, 8, 2405.

    13. [13]

      (13) Atkinson, R.; Aschmann, S. M. Int. J. Chem. Kinet. 1989, 21, 355.

    14. [14]

      (14) Anderson, R. S.; Czuba, E.; Ernst, D.; Huang, L.; Thompson, A. E.; Rudolph, J. J. Phys. Chem. A 2003, 107, 6191. doi: 10.1021/jp034256d

    15. [15]

      (15) Mehta, D.; Nguyen, A.; Montenegro, A.; Li, Z. J. Phys. Chem. A 2009, 113, 12942. doi: 10.1021/jp905074j

    16. [16]

      (16) Atkinson, R.; Aschmann, S. M.; Arey, J. Int. J. Chem. Kinet. 1991, 23, 77.

    17. [17]

      (17) Koch, R.; Knispel, R.; Elend, M.; Siese, M.; Zetzsch, C. Atmos. Chem. Phys. 2007, 7, 2057. doi: 10.5194/acp-7-2057-2007

    18. [18]

      (18) Nishino, N.; Arey, J.; Atkinson, R. J. Phys. Chem. A 2010, 114, 10140. doi: 10.1021/jp105112h

    19. [19]

      (19) Bloss, C.; Wagner, V.; Jenkin, M. E.; Volkamer, R.; Bloss, W. J.; Lee, J. D.; Heard, D. E.; Wirtz, K.; Martin-Reviejo, M.; Rea, G.; Wenger, J. C.; Pilling, M. J. Atmos. Chem. Phys. 2005, 5, 641. doi: 10.5194/acp-5-641-2005

    20. [20]

      (20) Carter, W. P. L. Atmos. Environ. 2007, 44, 5324.

    21. [21]

      (21) Carter, W. P. L.; Heo, G. Atmos. Environ. 2013, 77, 404. doi: 10.1016/j.atmosenv.2013.05.021

    22. [22]

      (22) Bandow, H.; Washida, N.; Akimoto, H. Bull. Chem. Soc. Jpn. 1985, 58, 2531. doi: 10.1246/bcsj.58.2531

    23. [23]

      (23) Tuazon, E. C.; Leod, H. M.; Atkinson, R.; Carter, W. P. L. Environ. Sci. Technol. 1986, 20, 383. doi: 10.1021/es00146a010

    24. [24]

      (24) Arey, J.; Obermeyer, G.; Aschmann, S. M.; Chattopadhyay, S.; Cusick, R. D.; Atkinson, R. Environ. Sci. Technol. 2009, 43, 683. doi: 10.1021/es8019098

    25. [25]

      (25) Shepson, P. B.; Edney, E. O.; Corse, E. W. J. Phys. Chem. 1984, 88, 4122. doi: 10.1021/j150662a053

    26. [26]

      (26) Huang, M.; Zhang, W.; Wang, Z.; Hao, L.; Zhao, W.; Liu, X.; Long, B.; Fang, L. Int. J. Quantum Chem. 2008, 108, 954.

    27. [27]

      (27) Glowacki, D. R.; Wang, L.; Pilling, M. J. J. Phys. Chem. A 2009, 113, 5385. doi: 10.1021/jp9001466

    28. [28]

      (28) Wang, L.; Wu, R.; Xu, C. J. Phys. Chem. A 2013, 117, 14163.

    29. [29]

      (29) Wu, R.; Pan, S.; Li, Y.; Wang, L. J. Phys. Chem. A 2014, 118, 4533. doi: 10.1021/jp500077f

    30. [30]

      (30) Li, Y.; Wang, L. Phys. Chem. Chem. Phys. 2014, 16, 17908. doi: 10.1039/C4CP02027H

    31. [31]

      (31) Pan, S.; Wang, L. J. Phys. Chem. A 2014, 118, 10778. doi: 10.1021/jp506815v

    32. [32]

      (32) Wang, L. ChemPhysChem 2015, 16, 1542. doi: 10.1002/cphc.201500012

    33. [33]

      (33) Wu, R.; Wang, S.; Wang, L. Chemosphere 2014, 111, 537. doi: 10.1016/j.chemosphere.2014.04.067

    34. [34]

      (34) Wood, G. P. F.; Radom, L.; Petersson, G. A.; Barnes, E. C.; Frisch, M. J.; Montgomery, J., J. A. J. Chem. Phys. 2006, 125, 094106.

    35. [35]

      (35) Jensen, F. Introduction to Computational Chemistry, 2nd ed.; John Wiley & Sons, Ltd: WestSussex, 2007.

    36. [36]

      (36) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.1; Gaussian Inc.: Wallingford CT, 2009.

    37. [37]

      (37) Fernandez-Ramos, A.; Ellingson, B. A.; Meana-Paneda, R.; Marques, J. M. C.; Truhlar, D. G. Theor. Chem. Acc. 2007, 118, 813. doi: 10.1007/s00214-007-0328-0

    38. [38]

      (38) Alvarez-Idaboy, J. R.; Mora-Diez, N.; Boyd, R. J.; Vivier-Bunge, A. J. Am. Chem. Soc. 2001, 123, 2018. doi: 10.1021/ja003372g

    39. [39]

      (39) Pilling, M. J.; Seakins, P. W. Reaction Kinetics; Oxford University Press Inc.: New York, 1999.

    40. [40]

      (40) Johnson, H. S.; Heicklen, J. J. Phys. Chem. 1962, 66, 532. doi: 10.1021/j100809a040

    41. [41]

      (41) Forst, W. Unimolecular Reactions: a Concise Introduction; Cambridge University Press: Cambridge, 2003.

    42. [42]

      (42) Holbrook, K. A.; Pilling, M. J.; Robertson, S. H.; Robinson, P. J. Unimolecular Reactions, 2nd ed.; Wiley: New York, 1996.

    43. [43]

      (43) Glowacki, D. R.; Liang, C. H.; Morley, C.; Pilling, M. J.; Robertson, S. H. J. Phys. Chem. A 2012, 116, 9545. doi: 10.1021/jp3051033

    44. [44]

      (44) Miller, W. H. J. Am. Chem. Soc. 1979, 101, 6810. doi: 10.1021/ja00517a004

    45. [45]

      (45) Gilbert, R. G.; Smith, S. C. Theory of Unimolecular and Recombination Reactions; BlackwellScientific Publications: Boston, 1990.

    46. [46]

      (46) Malick, D. K.; Petersson, G. A.; Montgomery, J., J. A. J. Chem. Phys. 1998, 108, 5703.

    47. [47]

      (47) Birdsall, A. W.; Andreoni, J. F.; Elrod, M. J. J. Phys. Chem. A 2010, 114, 10655. doi: 10.1021/jp105467e

    48. [48]

      (48) Carlton, A. G.; Bhave, P. V.; Napelenok, S. L.; Edney, E. O.; Sarwar, G.; Pinder, R. W.; Pouliot, G.A.; Houyoux, M. Environ. Sci. Technol. 2010, 44, 8553. doi: 10.1021/es100636q

    49. [49]

      (49) Ng, N. L.; Kroll, J. H.; Chan, A. W. H.; Chhabra, P. S.; Flagan, R. C.; Seinfeld, J. H. Atmos. Chem. Phys. 2007, 7, 3909.

    50. [50]

      (50) Orlando, J. J.; Tyndall, G. S. Chem. Soc. Rev. 2012, 41, 6294. doi: 10.1039/c2cs35166h

  • 加载中
    1. [1]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    2. [2]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    3. [3]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    4. [4]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    5. [5]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    6. [6]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    7. [7]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    8. [8]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    9. [9]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    10. [10]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    11. [11]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    12. [12]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    13. [13]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    16. [16]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    17. [17]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    18. [18]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    19. [19]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    20. [20]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029

Metrics
  • PDF Downloads(15)
  • Abstract views(565)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return