Citation:
PAN Shan-Shan, WANG Li-Ming. The Atmospheric Oxidation Mechanism of o-Xylene Initiated by Hydroxyl Radicals[J]. Acta Physico-Chimica Sinica,
;2015, 31(12): 2259-2268.
doi:
10.3866/PKU.WHXB201510152
-
The atmospheric oxidation mechanism of o-xylene (oX) initiated by hydroxyl (OH) radicals has been investigated by using quantum chemistry, transition state theory, and unimolecular theory (RRKMME) calculations. Molecular structures of reactants, transition states, and products are optimized at M06- 2X/6-311++G(2df, 2p) level, and the electronic energies are calculated at the ROCBS-QB3 level. The classical transition state theory is employed to predict the rates or rate constants for all the reaction steps as well as the branching ratios of the reaction pathways. RRKM-ME calculations are employed to explore the pressure-dependence of the reaction kinetics. Under atmospheric conditions, the oxidation of o-Xylene is dominated by OH addition to the C1 and C3 positions, forming adducts oX-1-OH (R1) and oX-3-OH (R3), which will readily react with atmospheric oxygen. The reactions of R1 and R3 with O2 can proceed by irreversible H-abstraction to dimethylphenols (R3 only), or by reversible addition to form bicyclic radicals,which recombine with atmospheric oxygen to form bicyclic peroxy radicals (BPRs). BPRs will react with NO and/or HO2 in the atmosphere, forming organonitrate, hydroperoxides (ROOH), and bicyclic alkoxy radicals (BARs), of which the BARs eventually transfer to the final products, including biacetyl, butenedial, methylglyoxal, 4-oxo-2-pentenal, epoxy-2,3-butenedial, and a small amount of glyoxal. The products ROOH and methylglyoxal are considered to contribute to the formation of secondary organic aerosols. A new oxidation mechanism of oX in the atmosphere is proposed, based on the current theoretical predictions and previous experimental measurements, and the predicted product yields under high NO conditions are compared with previous experimental measurements. The effect of temperature on the oxidation mechanism is also discussed.
-
-
-
[1]
(1) Huang, C.; Chen, C. H.; Li, L.; Cheng, Z.; Wang, H. L.; Huang, H. Y.; Streets, D. G.; Wang, Y. J.; Zhang, G. F.; Chen, Y. R. Atmos. Chem. Phys. 2011, 11, 4105.
-
[2]
(2) Zheng, J.; Shao, M.; Che, W.; Zhang, L.; Zhong, L.; Zhang, Y.; Street, D. Environ. Sci. Technol. 2009, 43, 8580. doi: 10.1021/es901688e
-
[3]
(3) Li, L.; Wang, X. M. Int. J. Environ. Res. Public Health 2012, 9, 1859. doi: 10.3390/ijerph9051859
-
[4]
(4) Izumi, K.; Fukuyama, T. Atmos. Environ. A 1990, 24, 1433. doi: 10.1016/0960-1686(90)90052-O
-
[5]
(5) Odum, J. R.; Jungkamp, T. P. W.; Griffin, R. J.; Flagan, R. C.; Seinfeld, J. H. Science 1997, 276, 96. doi: 10.1126/science.276.5309.96
-
[6]
(6) Borras, E.; Tortajada-Genaro, L. A. Atmospheric Environment 2012, 47, 154. doi: 10.1016/j.atmosenv.2011.11.020
-
[7]
(7) Martin-Reviejo, M.; Wirtz, K. Environ. Sci. Technol. 2005, 39, 1045. doi: 10.1021/es049802a
-
[8]
(8) Derwent, R. G.; Jenkin, M. E.; Passant, N. R.; Pilling, M. J. Environ. Sci. Policy 2007, 10, 445. doi: 10.1016/j.envsci.2007.01.005
-
[9]
(9) Carter, W. P. L. J. Air Waste Manage. Assoc. 1994, 44, 881.
-
[10]
(10) Carter, W. P. L.; Pierce, J. R.; Luo, D.; Malkina, I. L. Atmos. Environ. 1995, 29, 2499. doi: 10.1016/1352-2310(95)00149-S
-
[11]
(11) Hao, J. M.; Lü , Z. F.; Chu, B. W.; Wu, S.; Zhao, Z. Characterization, Experimental Study, and Modeling of Atmospheric Secondary Organic Aerosol; Science Press: Beijing, 2015. [郝吉明, 吕子峰, 楚碧武, 武山, 赵喆. 大气二次有机气溶胶污染特征及模拟研究. 北京: 科学出版社, 2015.]
-
[12]
(12) Henze, D. K.; Seinfeld, J. H.; Ng, N. L.; Kroll, J. H.; Fu, T. M.; Jacob, D. J.; Heald, C. L. Atmos. Chem. Phys. 2008, 8, 2405.
-
[13]
(13) Atkinson, R.; Aschmann, S. M. Int. J. Chem. Kinet. 1989, 21, 355.
-
[14]
(14) Anderson, R. S.; Czuba, E.; Ernst, D.; Huang, L.; Thompson, A. E.; Rudolph, J. J. Phys. Chem. A 2003, 107, 6191. doi: 10.1021/jp034256d
-
[15]
(15) Mehta, D.; Nguyen, A.; Montenegro, A.; Li, Z. J. Phys. Chem. A 2009, 113, 12942. doi: 10.1021/jp905074j
-
[16]
(16) Atkinson, R.; Aschmann, S. M.; Arey, J. Int. J. Chem. Kinet. 1991, 23, 77.
-
[17]
(17) Koch, R.; Knispel, R.; Elend, M.; Siese, M.; Zetzsch, C. Atmos. Chem. Phys. 2007, 7, 2057. doi: 10.5194/acp-7-2057-2007
-
[18]
(18) Nishino, N.; Arey, J.; Atkinson, R. J. Phys. Chem. A 2010, 114, 10140. doi: 10.1021/jp105112h
-
[19]
(19) Bloss, C.; Wagner, V.; Jenkin, M. E.; Volkamer, R.; Bloss, W. J.; Lee, J. D.; Heard, D. E.; Wirtz, K.; Martin-Reviejo, M.; Rea, G.; Wenger, J. C.; Pilling, M. J. Atmos. Chem. Phys. 2005, 5, 641. doi: 10.5194/acp-5-641-2005
-
[20]
(20) Carter, W. P. L. Atmos. Environ. 2007, 44, 5324.
-
[21]
(21) Carter, W. P. L.; Heo, G. Atmos. Environ. 2013, 77, 404. doi: 10.1016/j.atmosenv.2013.05.021
-
[22]
(22) Bandow, H.; Washida, N.; Akimoto, H. Bull. Chem. Soc. Jpn. 1985, 58, 2531. doi: 10.1246/bcsj.58.2531
-
[23]
(23) Tuazon, E. C.; Leod, H. M.; Atkinson, R.; Carter, W. P. L. Environ. Sci. Technol. 1986, 20, 383. doi: 10.1021/es00146a010
-
[24]
(24) Arey, J.; Obermeyer, G.; Aschmann, S. M.; Chattopadhyay, S.; Cusick, R. D.; Atkinson, R. Environ. Sci. Technol. 2009, 43, 683. doi: 10.1021/es8019098
-
[25]
(25) Shepson, P. B.; Edney, E. O.; Corse, E. W. J. Phys. Chem. 1984, 88, 4122. doi: 10.1021/j150662a053
-
[26]
(26) Huang, M.; Zhang, W.; Wang, Z.; Hao, L.; Zhao, W.; Liu, X.; Long, B.; Fang, L. Int. J. Quantum Chem. 2008, 108, 954.
-
[27]
(27) Glowacki, D. R.; Wang, L.; Pilling, M. J. J. Phys. Chem. A 2009, 113, 5385. doi: 10.1021/jp9001466
-
[28]
(28) Wang, L.; Wu, R.; Xu, C. J. Phys. Chem. A 2013, 117, 14163.
-
[29]
(29) Wu, R.; Pan, S.; Li, Y.; Wang, L. J. Phys. Chem. A 2014, 118, 4533. doi: 10.1021/jp500077f
-
[30]
(30) Li, Y.; Wang, L. Phys. Chem. Chem. Phys. 2014, 16, 17908. doi: 10.1039/C4CP02027H
-
[31]
(31) Pan, S.; Wang, L. J. Phys. Chem. A 2014, 118, 10778. doi: 10.1021/jp506815v
-
[32]
(32) Wang, L. ChemPhysChem 2015, 16, 1542. doi: 10.1002/cphc.201500012
-
[33]
(33) Wu, R.; Wang, S.; Wang, L. Chemosphere 2014, 111, 537. doi: 10.1016/j.chemosphere.2014.04.067
-
[34]
(34) Wood, G. P. F.; Radom, L.; Petersson, G. A.; Barnes, E. C.; Frisch, M. J.; Montgomery, J., J. A. J. Chem. Phys. 2006, 125, 094106.
-
[35]
(35) Jensen, F. Introduction to Computational Chemistry, 2nd ed.; John Wiley & Sons, Ltd: WestSussex, 2007.
-
[36]
(36) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.1; Gaussian Inc.: Wallingford CT, 2009.
-
[37]
(37) Fernandez-Ramos, A.; Ellingson, B. A.; Meana-Paneda, R.; Marques, J. M. C.; Truhlar, D. G. Theor. Chem. Acc. 2007, 118, 813. doi: 10.1007/s00214-007-0328-0
-
[38]
(38) Alvarez-Idaboy, J. R.; Mora-Diez, N.; Boyd, R. J.; Vivier-Bunge, A. J. Am. Chem. Soc. 2001, 123, 2018. doi: 10.1021/ja003372g
-
[39]
(39) Pilling, M. J.; Seakins, P. W. Reaction Kinetics; Oxford University Press Inc.: New York, 1999.
-
[40]
(40) Johnson, H. S.; Heicklen, J. J. Phys. Chem. 1962, 66, 532. doi: 10.1021/j100809a040
-
[41]
(41) Forst, W. Unimolecular Reactions: a Concise Introduction; Cambridge University Press: Cambridge, 2003.
-
[42]
(42) Holbrook, K. A.; Pilling, M. J.; Robertson, S. H.; Robinson, P. J. Unimolecular Reactions, 2nd ed.; Wiley: New York, 1996.
-
[43]
(43) Glowacki, D. R.; Liang, C. H.; Morley, C.; Pilling, M. J.; Robertson, S. H. J. Phys. Chem. A 2012, 116, 9545. doi: 10.1021/jp3051033
-
[44]
(44) Miller, W. H. J. Am. Chem. Soc. 1979, 101, 6810. doi: 10.1021/ja00517a004
-
[45]
(45) Gilbert, R. G.; Smith, S. C. Theory of Unimolecular and Recombination Reactions; BlackwellScientific Publications: Boston, 1990.
-
[46]
(46) Malick, D. K.; Petersson, G. A.; Montgomery, J., J. A. J. Chem. Phys. 1998, 108, 5703.
-
[47]
(47) Birdsall, A. W.; Andreoni, J. F.; Elrod, M. J. J. Phys. Chem. A 2010, 114, 10655. doi: 10.1021/jp105467e
-
[48]
(48) Carlton, A. G.; Bhave, P. V.; Napelenok, S. L.; Edney, E. O.; Sarwar, G.; Pinder, R. W.; Pouliot, G.A.; Houyoux, M. Environ. Sci. Technol. 2010, 44, 8553. doi: 10.1021/es100636q
-
[49]
(49) Ng, N. L.; Kroll, J. H.; Chan, A. W. H.; Chhabra, P. S.; Flagan, R. C.; Seinfeld, J. H. Atmos. Chem. Phys. 2007, 7, 3909.
-
[50]
(50) Orlando, J. J.; Tyndall, G. S. Chem. Soc. Rev. 2012, 41, 6294. doi: 10.1039/c2cs35166h
-
[1]
-
-
-
[1]
Yanglin Jiang , Mingqing Chen , Min Liang , Yige Yao , Yan Zhang , Peng Wang , Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027
-
[2]
Supin Zhao , Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024
-
[3]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[4]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[5]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[6]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[7]
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
-
[8]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[9]
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
-
[10]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[11]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[12]
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
-
[13]
Wanchun Zhu , Yongmei Liu , Li Wang , Yunshan Bai , Shu'e Song , Xiaokui Wang , Zhongyun Wu , Hong Yuan , Yunchao Li , Fuping Tian , Yuan Chun , Jianrong Zhang , Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028
-
[14]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[15]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[16]
Xudong Liu , Huili Fan , Junping Xiao , Min Yang , Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041
-
[17]
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
-
[18]
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012
-
[19]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[20]
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029
-
[1]
Metrics
- PDF Downloads(15)
- Abstract views(565)
- HTML views(53)