Citation:
ZHANG Shu-Zhen, ZHENG Chao, ZHU Chang-Jin. Molecular Docking and Receptor-Based 3D-QSAR Studies on Aromatic Thiazine Derivatives as Selective Aldose Reductase Inhibitors[J]. Acta Physico-Chimica Sinica,
;2015, 31(12): 2395-2404.
doi:
10.3866/PKU.WHXB201510142
-
Aromatic thiazine derivatives were proved to be potent aldose reductase inhibitors (ARIs) with high selectivity for aldose reductase (ALr2) over aldehyde reductase (ALR1). Molecular docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) studies are conducted on a dataset of 44 molecules to explore the interactions between aromatic thiazine derivatives and ALr2. The superposition of ALr2 and ALR1 active sites indicate that residues Leu 300 and Cys 298 from ALr2 may explain the good selectivity of the most active compound 1m. The comparative molecular field analysis (CoMFA) model (q2 = 0.649, r2 = 0.934; q2: cross-validated correlation coefficient, r2: non-cross-validated correlation coefficient) and comparative molecular similarity indices analysis (CoMSIA) model (q2 = 0.746, r2 = 0.971), based on the docking conformations of these compounds, are obtained to identify the key structures impacting their inhibitory potencies. The predictive power of the developed models is further validated by a test set of seven compounds, resulting in predictive rPred2 values of 0.748 for CoMFA and 0.828 for CoMSIA. 3D contour maps, drawn from 3D-QSAR models, reveal that future modifications of substituents at the C3 and C4 positions of the benzyl ring and the C5 and C7 positions of the benzothiazine-1,1-dioxide core might be favorable for improving the biological activity, which are in good accordance with the C7 modification results reported in our earlier work. The information rendered by 3DQSAR models could be helpful in the rational design of novel ARIs with good inhibitory activity to treat diabetic complications in the future.
-
-
-
[1]
(1) Mathis, D.; Vence, L.; Benoist, C. Nature 2001, 414, 792. doi: 10.1038/414792a
-
[2]
(2) Singh, R.; Kaur, N.; Kishore, L.; Gupta, G. K. J. Ethnopharmacol. 2013, 150, 51. doi: 10.1016/j.jep.2013.08.051
-
[3]
(3) Johnson, B. F.; Nesto, R. W.; Pfeifer, M. A.; Slater, W. R.; Vinik, A. I.; Chyun, D. A.; Law, G.; Wackers, F. J. T.; Young, L. H. Diabetes Care 2004, 27, 448. doi: 10.2337/diacare.27.2.448
-
[4]
(4) Giannoukakis, N. Curr. Opin. Invest. Dr. 2006, 7, 916.
-
[5]
(5) Ramirez, M. A.; Borja, N. L. Pharmacotherapy 2008, 28, 646. doi: 10.1592/phco.28.5.646
-
[6]
(6) Dvornik, E.; Simard, D. N.; Krami, M.; Sestanj, K.; Gabbay, K. H.; Kinoshita, J. H.; Varma, S. D.; Merola, L. O. Science 1973, 182, 1146. doi: 10.1126/science.182.4117.1146
-
[7]
(7) Nicolucci, A.; Carinci, F.; Cavaliere, D.; Scorpiglione, N.; Belfiglio, M.; Labbrozzi, D.; Mari, E.; Benedetti, M. M.; Tognoni, G.; Liberati, A. Diabetic Med. 1996, 13, 1017.
-
[8]
(8) Hu, X.; Li, S. B.; Yang, G.Y.; Liu, H.; Boden, G.; Li, L. PloS One 2014, 9, 11.
-
[9]
(9) Ramasamy, R.; Goldberg, I. J. Circ. Res. 2010, 106, 1449.
-
[10]
(10) Oates, P. J. Curr. Drug Targets 2008, 9, 14. doi: 10.2174/138945008783431781
-
[11]
(11) Srivastava, S. K.; Ramana, K. V.; Bhatnagar, A. Endocr. Rev. 2005, 26, 380. doi: 10.1210/er.2004-0028
-
[12]
(12) Kinoshita, J. H.; Kador, P.; Catiles, M. Jama 1981, 246, 257. doi: 10.1001/jama.1981.03320030049032
-
[13]
(13) Ramunno, A.; Cosconati, S.; Sartini, S.; Maglio, V.; Angiuoli, S.; La Pietra, V.; Di Maro, S.; Giustiniano, M.; La Motta, C.; Da Settimo, F.; Marinelli, L.; Novellino, E. Eur. J. Med. Chem. 2012, 51, 216.
-
[14]
(14) Ottana, R.; Maccari, R.; Giglio, M.; Del Corso, A.; Cappiello, M.; Mura, U.; Cosconati, S.; Marinelli, L.; Novellino, E.; Sartini, S.; La Motta, C.; Da Settimo, F. Eur. J. Med. Chem. 2011, 46, 2797. doi: 10.1016/j.ejmech.2011.03.068
-
[15]
(15) Hotta, N.; Akanuma, Y.; Kawamori, R.; Matsuoka, K.; Oka, Y.; Shichiri, M.; Toyota, T.; Nakashima, M.; Yoshimura, I.; Sakamoto, N.; Shigeta, Y.; Grp, A. S. Diabetes Care 2006, 29, 1538. doi: 10.2337/dc05-2370
-
[16]
(16) Chen, X.; Zhu, C. J.; Guo, F.; Qiu, X. W.; Yang, Y. C.; Zhang, S. Z.; He, M. L.; Parveen, S.; Jing, C. J.; Li, Y.; Ma, B. J. Med. Chem. 2010, 53, 8330. doi: 10.1021/jm100962a
-
[17]
(17) Zhang, S. Z.; Chen, X.; Parveen, S.; Hussain, S.; Yang, Y. C.; Jing, C. J.; Zhu, C. J. ChemMedChem 2013, 8, 603. doi: 10.1002/cmdc.v8.4
-
[18]
(18) Papastavrou, N.; Chatzopoulou, M.; Pegklidou, K.; Nicolaou, I. Bioorg. Med. Chem. 2013, 21, 4951. doi: 10.1016/j.bmc.2013.06.062
-
[19]
(19) Feather, M. S.; Flynn, T. G.; Munro, K. A.; Kubiseski, T. J.; Walton, D. J. BBA-Gen Subjects 1995, 1244, 10. doi: 10.1016/0304-4165(94)00156-R
-
[20]
(20) Ratliff, D. M.; VanderJagt, D. J.; Eaton, R. P.; VanderJagt, D. L. J. Clin. Endocr. Metab. 1996, 81, 488.
-
[21]
(21) Chen, X.; Yang, Y. C.; Ma, B.; Zhang, S. Z.; He, M. L.; Gui, D. Q.; Hussain, S.; Jing, C. J.; Zhu, C. J.; Yu, Q.; Liu, Y. Eur. J. Med. Chem. 2011, 46, 1536. doi: 10.1016/j.ejmech.2011.01.072
-
[22]
(22) Chen, X.; Zhang, S. Z.; Yang, Y. C.; Hussain, S.; He, M. L.; Gui, D. Q.; Ma, B.; Jing, C. J.; Qiao, Z. X.; Zhu, C. J.; Yu, Q. Bioorg. Med. Chem. 2011, 19, 7262. doi: 10.1016/j.bmc.2011.07.051
-
[23]
(23) Yang, Y. C.; Zhang, S. Z.; Wu, B. B.; Ma, M. M.; Chen, X.; Qin, X. Y.; He, M. L.; Hussain, S.; Jing, C. J.; Ma, B.; Zhu, C. J. ChemMedChem 2012, 7, 823. doi: 10.1002/cmdc.v7.5
-
[24]
(24) Hussain, S.; Parveen, S.; Hao, X.; Zhang, S. Z.; Wang, W.; Qin, X. Y.; Yang, Y. C.; Chen, X.; Zhu, S. J.; Zhu, C. J.; Ma, B. Eur. J. Med. Chem. 2014, 80, 383. doi: 10.1016/j.ejmech.2014.04.047
-
[25]
(25) Parveen, S.; Hussain, S.; Zhu, S. J.; Qin, X. Y.; Hao, X.; Zhang, S. Z.; Lu, J. L.; Zhu, C. J. RSC Adv. 2014, 4, 21134. doi: 10.1039/c4ra01016g
-
[26]
(26) Parveen, S.; Hussain, S.; Qin, X. Y.; Hao, X.; Zhu, S. J.; Rui, M.; Zhang, S. Z.; Fu, F. Y.; Ma, B.; Yu, Q.; Zhu, C. J. J. Org. Chem. 2014, 79, 4963. doi: 10.1021/jo500338c
-
[27]
(27) Gasteiger, J.; Marsili, M. Tetrahedron 1980, 36, 3219. doi: 10.1016/0040-4020(80)80168-2
-
[28]
(28) Marsili, M.; Gasteiger, J. Croat. Chem. Acta 1980, 53, 601.
-
[29]
(29) Gasteiger, J.; Marsili, M. Org. Magn. Reson 1981, 15, 353.
-
[30]
(30) Vaz, R. J.; Maynard, G. D.; Kudlacz, E. M.; Bratton, L. D.; Kane, J. M.; Shatzer, S. A.; Knippenberg, R. W. Bioorg. Med. Chem. Lett. 1997, 7, 2825. doi: 10.1016/S0960-894X(97)10098-1
-
[31]
(31) Kroemer, R. T.; Hecht, P.; Liedl, K. R. J. Comput. Chem. 1996, 17, 1296.
-
[32]
(32) Meetei, P. A.; Hauser, A. S.; Raju, P. S.; Rathore, R. S.; Prabhu, N. P.; Vindal, V. Med. Chem. Res. 2014, 23, 3861. doi: 10.1007/s00044-014-0950-z
-
[33]
(33) Bohren, K. M.; Grimshaw, C. E.; Lai, C. J.; Harrison, D. H.; Ringe, D.; Petsko, G. A.; Gabbay, K. H. Biochemistry 1994, 33, 2021. doi: 10.1021/bi00174a007
-
[34]
(34) Grimshaw, C. E.; Bohren, K. M.; Lai, C. J.; Gabbay, K. H. Biochemistry 1995, 34, 14374. doi: 10.1021/bi00044a014
-
[35]
(35) Oka, M.; Matsumoto, Y.; Sugiyama, S.; Tsuruta, N.; Matsushima, M. J. Med. Chem. 2000, 43, 2479. doi: 10.1021/jm990502r
-
[36]
(36) Bohren, K. M.; Grimshaw, C. E.; Gabbay, K. H. J. Biol. Chem. 1992, 267, 20965.
-
[37]
(37) El-Kabbani, O.; Wilson, D. K.; Petrash, M.; Quiocho, F. A. Mol. Vis. 1998, 4, 19.
-
[38]
(38) Golbraikh, A.; Tropsha, A. J. Mol. Graph. 2002, 20, 269. doi: 10.1016/S1093-3263(01)00123-1
-
[39]
(39) Golbraikh, A.; Tropsha, A. Mol. Divers. 2002, 5, 231.
-
[1]
-
-
-
[1]
Zhaoyu Wen , Na Han , Yanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001
-
[2]
Zhi Zhou , Yu-E Lian , Yuqing Li , Hui Gao , Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104
-
[3]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043
-
[4]
Zhongyan Cao , Shengnan Jin , Yuxia Wang , Yiyi Chen , Xianqiang Kong , Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186
-
[5]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[6]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[7]
Yihui Song , Shangshang Qin , Kai Wu , Chengyun Jin , Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018
-
[8]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[9]
Jingkun Yu , Xue Yong , Ang Cao , Siyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015
-
[10]
Zhi Chai , Huashan Huang , Xukai Shi , Yujing Lan , Zhentao Yuan , Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046
-
[11]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[12]
Lijun Yue , Siya Liu , Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005
-
[13]
Ruiying WANG , Hui WANG , Fenglan CHAI , Zhinan ZUO , Benlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052
-
[14]
Xichen YAO , Shuxian WANG , Yun WANG , Cheng WANG , Chuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384
-
[15]
Xue-Peng Zhang , Yuchi Long , Yushu Pan , Jiding Wang , Baoyu Bai , Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107
-
[16]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[17]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[18]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[19]
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
-
[20]
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
-
[1]
Metrics
- PDF Downloads(50)
- Abstract views(600)
- HTML views(53)