Citation: ZHANG Shu-Zhen, ZHENG Chao, ZHU Chang-Jin. Molecular Docking and Receptor-Based 3D-QSAR Studies on Aromatic Thiazine Derivatives as Selective Aldose Reductase Inhibitors[J]. Acta Physico-Chimica Sinica, ;2015, 31(12): 2395-2404. doi: 10.3866/PKU.WHXB201510142 shu

Molecular Docking and Receptor-Based 3D-QSAR Studies on Aromatic Thiazine Derivatives as Selective Aldose Reductase Inhibitors

  • Corresponding author: ZHU Chang-Jin, 
  • Received Date: 10 August 2015
    Available Online: 12 October 2015

    Fund Project: 国家自然科学基金(21272025) (21272025)北京市科学技术委员会(Z131100004013003)资助项目 (Z131100004013003)

  • Aromatic thiazine derivatives were proved to be potent aldose reductase inhibitors (ARIs) with high selectivity for aldose reductase (ALr2) over aldehyde reductase (ALR1). Molecular docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) studies are conducted on a dataset of 44 molecules to explore the interactions between aromatic thiazine derivatives and ALr2. The superposition of ALr2 and ALR1 active sites indicate that residues Leu 300 and Cys 298 from ALr2 may explain the good selectivity of the most active compound 1m. The comparative molecular field analysis (CoMFA) model (q2 = 0.649, r2 = 0.934; q2: cross-validated correlation coefficient, r2: non-cross-validated correlation coefficient) and comparative molecular similarity indices analysis (CoMSIA) model (q2 = 0.746, r2 = 0.971), based on the docking conformations of these compounds, are obtained to identify the key structures impacting their inhibitory potencies. The predictive power of the developed models is further validated by a test set of seven compounds, resulting in predictive rPred2 values of 0.748 for CoMFA and 0.828 for CoMSIA. 3D contour maps, drawn from 3D-QSAR models, reveal that future modifications of substituents at the C3 and C4 positions of the benzyl ring and the C5 and C7 positions of the benzothiazine-1,1-dioxide core might be favorable for improving the biological activity, which are in good accordance with the C7 modification results reported in our earlier work. The information rendered by 3DQSAR models could be helpful in the rational design of novel ARIs with good inhibitory activity to treat diabetic complications in the future.
  • 加载中
    1. [1]

      (1) Mathis, D.; Vence, L.; Benoist, C. Nature 2001, 414, 792. doi: 10.1038/414792a

    2. [2]

      (2) Singh, R.; Kaur, N.; Kishore, L.; Gupta, G. K. J. Ethnopharmacol. 2013, 150, 51. doi: 10.1016/j.jep.2013.08.051

    3. [3]

      (3) Johnson, B. F.; Nesto, R. W.; Pfeifer, M. A.; Slater, W. R.; Vinik, A. I.; Chyun, D. A.; Law, G.; Wackers, F. J. T.; Young, L. H. Diabetes Care 2004, 27, 448. doi: 10.2337/diacare.27.2.448

    4. [4]

      (4) Giannoukakis, N. Curr. Opin. Invest. Dr. 2006, 7, 916.

    5. [5]

      (5) Ramirez, M. A.; Borja, N. L. Pharmacotherapy 2008, 28, 646. doi: 10.1592/phco.28.5.646

    6. [6]

      (6) Dvornik, E.; Simard, D. N.; Krami, M.; Sestanj, K.; Gabbay, K. H.; Kinoshita, J. H.; Varma, S. D.; Merola, L. O. Science 1973, 182, 1146. doi: 10.1126/science.182.4117.1146

    7. [7]

      (7) Nicolucci, A.; Carinci, F.; Cavaliere, D.; Scorpiglione, N.; Belfiglio, M.; Labbrozzi, D.; Mari, E.; Benedetti, M. M.; Tognoni, G.; Liberati, A. Diabetic Med. 1996, 13, 1017.

    8. [8]

      (8) Hu, X.; Li, S. B.; Yang, G.Y.; Liu, H.; Boden, G.; Li, L. PloS One 2014, 9, 11.

    9. [9]

      (9) Ramasamy, R.; Goldberg, I. J. Circ. Res. 2010, 106, 1449.

    10. [10]

      (10) Oates, P. J. Curr. Drug Targets 2008, 9, 14. doi: 10.2174/138945008783431781

    11. [11]

      (11) Srivastava, S. K.; Ramana, K. V.; Bhatnagar, A. Endocr. Rev. 2005, 26, 380. doi: 10.1210/er.2004-0028

    12. [12]

      (12) Kinoshita, J. H.; Kador, P.; Catiles, M. Jama 1981, 246, 257. doi: 10.1001/jama.1981.03320030049032

    13. [13]

      (13) Ramunno, A.; Cosconati, S.; Sartini, S.; Maglio, V.; Angiuoli, S.; La Pietra, V.; Di Maro, S.; Giustiniano, M.; La Motta, C.; Da Settimo, F.; Marinelli, L.; Novellino, E. Eur. J. Med. Chem. 2012, 51, 216.

    14. [14]

      (14) Ottana, R.; Maccari, R.; Giglio, M.; Del Corso, A.; Cappiello, M.; Mura, U.; Cosconati, S.; Marinelli, L.; Novellino, E.; Sartini, S.; La Motta, C.; Da Settimo, F. Eur. J. Med. Chem. 2011, 46, 2797. doi: 10.1016/j.ejmech.2011.03.068

    15. [15]

      (15) Hotta, N.; Akanuma, Y.; Kawamori, R.; Matsuoka, K.; Oka, Y.; Shichiri, M.; Toyota, T.; Nakashima, M.; Yoshimura, I.; Sakamoto, N.; Shigeta, Y.; Grp, A. S. Diabetes Care 2006, 29, 1538. doi: 10.2337/dc05-2370

    16. [16]

      (16) Chen, X.; Zhu, C. J.; Guo, F.; Qiu, X. W.; Yang, Y. C.; Zhang, S. Z.; He, M. L.; Parveen, S.; Jing, C. J.; Li, Y.; Ma, B. J. Med. Chem. 2010, 53, 8330. doi: 10.1021/jm100962a

    17. [17]

      (17) Zhang, S. Z.; Chen, X.; Parveen, S.; Hussain, S.; Yang, Y. C.; Jing, C. J.; Zhu, C. J. ChemMedChem 2013, 8, 603. doi: 10.1002/cmdc.v8.4

    18. [18]

      (18) Papastavrou, N.; Chatzopoulou, M.; Pegklidou, K.; Nicolaou, I. Bioorg. Med. Chem. 2013, 21, 4951. doi: 10.1016/j.bmc.2013.06.062

    19. [19]

      (19) Feather, M. S.; Flynn, T. G.; Munro, K. A.; Kubiseski, T. J.; Walton, D. J. BBA-Gen Subjects 1995, 1244, 10. doi: 10.1016/0304-4165(94)00156-R

    20. [20]

      (20) Ratliff, D. M.; VanderJagt, D. J.; Eaton, R. P.; VanderJagt, D. L. J. Clin. Endocr. Metab. 1996, 81, 488.

    21. [21]

      (21) Chen, X.; Yang, Y. C.; Ma, B.; Zhang, S. Z.; He, M. L.; Gui, D. Q.; Hussain, S.; Jing, C. J.; Zhu, C. J.; Yu, Q.; Liu, Y. Eur. J. Med. Chem. 2011, 46, 1536. doi: 10.1016/j.ejmech.2011.01.072

    22. [22]

      (22) Chen, X.; Zhang, S. Z.; Yang, Y. C.; Hussain, S.; He, M. L.; Gui, D. Q.; Ma, B.; Jing, C. J.; Qiao, Z. X.; Zhu, C. J.; Yu, Q. Bioorg. Med. Chem. 2011, 19, 7262. doi: 10.1016/j.bmc.2011.07.051

    23. [23]

      (23) Yang, Y. C.; Zhang, S. Z.; Wu, B. B.; Ma, M. M.; Chen, X.; Qin, X. Y.; He, M. L.; Hussain, S.; Jing, C. J.; Ma, B.; Zhu, C. J. ChemMedChem 2012, 7, 823. doi: 10.1002/cmdc.v7.5

    24. [24]

      (24) Hussain, S.; Parveen, S.; Hao, X.; Zhang, S. Z.; Wang, W.; Qin, X. Y.; Yang, Y. C.; Chen, X.; Zhu, S. J.; Zhu, C. J.; Ma, B. Eur. J. Med. Chem. 2014, 80, 383. doi: 10.1016/j.ejmech.2014.04.047

    25. [25]

      (25) Parveen, S.; Hussain, S.; Zhu, S. J.; Qin, X. Y.; Hao, X.; Zhang, S. Z.; Lu, J. L.; Zhu, C. J. RSC Adv. 2014, 4, 21134. doi: 10.1039/c4ra01016g

    26. [26]

      (26) Parveen, S.; Hussain, S.; Qin, X. Y.; Hao, X.; Zhu, S. J.; Rui, M.; Zhang, S. Z.; Fu, F. Y.; Ma, B.; Yu, Q.; Zhu, C. J. J. Org. Chem. 2014, 79, 4963. doi: 10.1021/jo500338c

    27. [27]

      (27) Gasteiger, J.; Marsili, M. Tetrahedron 1980, 36, 3219. doi: 10.1016/0040-4020(80)80168-2

    28. [28]

      (28) Marsili, M.; Gasteiger, J. Croat. Chem. Acta 1980, 53, 601.

    29. [29]

      (29) Gasteiger, J.; Marsili, M. Org. Magn. Reson 1981, 15, 353.

    30. [30]

      (30) Vaz, R. J.; Maynard, G. D.; Kudlacz, E. M.; Bratton, L. D.; Kane, J. M.; Shatzer, S. A.; Knippenberg, R. W. Bioorg. Med. Chem. Lett. 1997, 7, 2825. doi: 10.1016/S0960-894X(97)10098-1

    31. [31]

      (31) Kroemer, R. T.; Hecht, P.; Liedl, K. R. J. Comput. Chem. 1996, 17, 1296.

    32. [32]

      (32) Meetei, P. A.; Hauser, A. S.; Raju, P. S.; Rathore, R. S.; Prabhu, N. P.; Vindal, V. Med. Chem. Res. 2014, 23, 3861. doi: 10.1007/s00044-014-0950-z

    33. [33]

      (33) Bohren, K. M.; Grimshaw, C. E.; Lai, C. J.; Harrison, D. H.; Ringe, D.; Petsko, G. A.; Gabbay, K. H. Biochemistry 1994, 33, 2021. doi: 10.1021/bi00174a007

    34. [34]

      (34) Grimshaw, C. E.; Bohren, K. M.; Lai, C. J.; Gabbay, K. H. Biochemistry 1995, 34, 14374. doi: 10.1021/bi00044a014

    35. [35]

      (35) Oka, M.; Matsumoto, Y.; Sugiyama, S.; Tsuruta, N.; Matsushima, M. J. Med. Chem. 2000, 43, 2479. doi: 10.1021/jm990502r

    36. [36]

      (36) Bohren, K. M.; Grimshaw, C. E.; Gabbay, K. H. J. Biol. Chem. 1992, 267, 20965.

    37. [37]

      (37) El-Kabbani, O.; Wilson, D. K.; Petrash, M.; Quiocho, F. A. Mol. Vis. 1998, 4, 19.

    38. [38]

      (38) Golbraikh, A.; Tropsha, A. J. Mol. Graph. 2002, 20, 269. doi: 10.1016/S1093-3263(01)00123-1

    39. [39]

      (39) Golbraikh, A.; Tropsha, A. Mol. Divers. 2002, 5, 231.

  • 加载中
    1. [1]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    2. [2]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    3. [3]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    4. [4]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    7. [7]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    8. [8]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    9. [9]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    10. [10]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    11. [11]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    12. [12]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    13. [13]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    14. [14]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    15. [15]

      Xue-Peng Zhang Yuchi Long Yushu Pan Jiding Wang Baoyu Bai Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107

    16. [16]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    17. [17]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    18. [18]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    19. [19]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    20. [20]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

Metrics
  • PDF Downloads(50)
  • Abstract views(600)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return