Citation:
SHAO Yan, OUYANG Fang-Ping, PENG Sheng-Lin, LIU Qi, JIA Zhi-An, ZOU Hui. First-Principles Calculations of Electronic Properties of Defective Armchair MoS2 Nanoribbons[J]. Acta Physico-Chimica Sinica,
;2015, 31(11): 2083-2090.
doi:
10.3866/PKU.WHXB201510132
-
We investigated the electronic properties of armchair MoS2 nanoribbons with vacancy defects using a first-principles method based on density functional theory. It was found that defects reduced the stability of armchair MoS2 nanoribbons. Mo vacancies and MoS2 triple vacancies can both change the band structures of nanoribbons from semiconductor to metallic, whereas S vacancies, 2S divacancies, and MoS divacancies only decrease the bandgap. The densities of states and eigenstates of the nanoribbons indicated that impurity bands near the Fermi level basically contributed to the defect states. The relationships between the bandgap and width of four types of semiconducting nanoribbons were simulated. Nanoribbons with no defects have a bandgap that oscillates with width in a period of three, but the bandgap changes nonperiodically for nanoribbons with S vacancies, 2S divacancies, and MoS divacancies. We also found that when the concentration of defects decreased, the vacancy defects did not destroy the nanoribbon semiconducting behavior but only decreased the bandgap. These results open up possibilities for MoS2 nanoribbon applications in novel nanoelectronic devices.
-
-
-
[1]
(1) Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Nat. Nanotechnol. 2012, 7 (11), 699. doi: 10.1038/nnano.2012.193
-
[2]
(2) Kuc, A.; Zibouche, N.; Heine, T. Phys. Rev. B 2011, 83 (24), 245213. doi: 10.1103/Physrevb.83.245213
-
[3]
(3) Lebegue, S.; Eriksson, O. Phys. Rev. B 2009, 79 (11), 115409. doi: 10.1103/Physrev.79.115409
-
[4]
(4) Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Phys. Rev. Lett. 2010, 105 (13), 136805. doi: 10.1103/Physrevlett. 105.136805
-
[5]
(5) He, Q. Y.; Wu, S. X.; Gao, S.; Cao, X. H.; Yin, Z. Y.; Li, H.; Chen, P.; Zhang, H. ACS Nano 2011, 5 (6), 5038. doi: 10.1021/nn201118c
-
[6]
(6) Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Angew. Chem. Int. Edit. 2011, 50 (47), 11093. doi: 10.1002/anie.201106004
-
[7]
(7) Balendhran, S.; Ou, J. Z.; Bhaskaran, M.; Sriram, S.; Ippolito, S.; Vasic, Z.; Kats, E.; Bhargava, S.; Zhuiykov, S.; Kalantar-Zadeh, K. Nanoscale 2012, 4 (2), 461. doi: 10.1039/c1nr10803d
-
[8]
(8) Benameur, M. M.; Radisavljevic, B.; Heron, J. S.; Sahoo, S.; Berger, H.; Kis, A. Nanotechnology 2011, 22 (12), 125706. doi: 10.1088/0957-4484/22/12/125706
-
[9]
(9) Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Nat. Nanotechnol. 2011, 6 (3), 147. doi: 10.1038/nnano. 2010.279
-
[10]
(10) Feng, W. X.; Yao, Y. G.; Zhu, W. G.; Zhou, J. J.; Yao, W.; Xiao, D. Phys. Rev. B 2012, 86 (16), 165108. doi: 10.1103/Physrevb.86.165108
-
[11]
(11) Ma, Y. D.; Dai, Y.; Guo, M.; Niu, C. W.; Lu, J. B.; Huang, B. B. Phys. Chem. Chem. Phys. 2011, 13 (34), 15546. doi: 10.1039/c1cp21159e
-
[12]
(12) Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutierrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F.; Johnston-Halperin, E.; Kuno, M.; Plashnitsa, V. V.; Robinson, R. D.; Ruoff, R. S.; Salahuddin, S.; Shan, J.; Shi, L.; Spencer, M. G.; Terrones, M.; Windl, W.; Goldberger, J. E. ACS Nano 2013, 7 (4), 2898. doi: 10.1021/nn400280c
-
[13]
(13) Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. Nature 2012, 490 (7419), 192. doi: 10.1038/nature11458
-
[14]
(14) Georgakilas, V.; Otyepka, M.; Bourlinos, A. B.; Chandra, V.; Kim, N.; Kemp, K. C.; Hobza, P.; Zboril, R.; Kim, K. S. Chem. Rev. 2012, 112 (11), 6156. doi: 10.1021/cr3000412
-
[15]
(15) Jiang, X. W.; Li, S. S. Appl. Phys. Lett. 2014, 104 (19), 193510. doi: 10.1063/1.4878515
-
[16]
(16) Li, Q.; Newberg, J. T.; Walter, E. C.; Hemminger, J. C.; Penner, R. M. Nano Lett. 2004, 4 (2), 277. doi: 10.1021/nl035011f
-
[17]
(17) Wang, Z. Y.; Li, H.; Liu, Z.; Shi, Z. J.; Lu, J.; Suenaga, K.; Joung, S. K.; Okazaki, T.; Gu, Z. N.; Zhou, J.; Gao, Z. X.; Li, G. P.; Sanvito, S.; Wang, E. G.; Iijima, S. J. Am. Chem. Soc. 2010, 132 (39), 13840. doi: 10.1021/ja1058026
-
[18]
(18) Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O.; Eaves, L.; Ponomarenko, L. A.; Geim, A. K.; Novoselov, K. S.; Mishchenko, A. Nat. Nanotechnol. 2013, 8 (2), 100. doi: 10.1038/Nnano.2012.224
-
[19]
(19) Kou, L. Z.; Tang, C.; Zhang, Y.; Heine, T.; Chen, C. F.; Frauenheim, T. J. Phys. Chem. Lett. 2012, 3 (20), 2934. doi: 10.1021/jz301339e
-
[20]
(20) Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. J. Am. Chem. Soc. 2013, 135 (28), 10274. doi: 10.1021/ja404523s
-
[21]
(21) Wei, J. W.; Ma, Z. W.; Zeng, H.; Wang, Z. Y.; Wei, Q.; Peng, P. AIP Adv. 2012, 2 (4), 042141. doi: 10.1063/1.4768261
-
[22]
(22) Cooper, R. C.; Lee, C.; Marianetti, C. A.; Wei, X. D.; Hone, J.; Kysar, J. W. Phys. Rev. B 2013, 87 (3), 035423. doi: 10.1103/Physrevb.87.035423
-
[23]
(23) Li, T. S. Phys. Rev. B 2012, 85 (23), 235407. doi: 10.1103/Physrevb.85.235407
-
[24]
(24) Li, J. W.; Medhekar, N. V.; Shenoy, V. B. J. Phys. Chem. C 2013, 117 (30), 15842. doi: 10.1021/jp403986v
-
[25]
(25) Shidpour, R.; Manteghian, M. Nanoscale 2010, 2 (8), 1429. doi: 10.1039/b9nr00368a
-
[26]
(26) Li, X. M.; Long, M. Q.; Cui, L. L.; Xiao, J.; Xu, H. Chin. Phys. B 2014, 23 (4), 047307. doi: 10.1088/1674-1056/23/4/047307
-
[27]
(27) Jiang, X. W.; Gong, J.; Xu, N.; Li, S. S.; Zhang, J. F.; Hao, Y.; Wang, L. W. Appl. Phys. Lett. 2014, 104 (2), 023512. doi: 10.1063/1.4862667
-
[28]
(28) Li, Y. F.; Zhou, Z.; Zhang, S. B.; Chen, Z. F. J. Am. Chem. Soc. 2008, 130 (49), 16739. doi: 10.1021/ja805545x
-
[29]
(29) Ouyang, F. P.; Xu, H.; Wei, C. Acta Phys. Sin. 2008, 57, 1073. [欧阳方平, 徐慧, 魏辰. 物理学报, 2008, 57, 1073.]
-
[1]
-
-
-
[1]
Yang Li , Jiachen Li , Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016
-
[2]
Ximeng CHI , Jianwei WEI , Yunyun WANG , Wenxin DENG , Jiayi DAI , Xu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401
-
[3]
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
-
[4]
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
-
[5]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[6]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[7]
Haiyu Zhu , Zhuoqun Wen , Wen Xiong , Xingzhan Wei , Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078
-
[8]
Kun Rong , Cuilian Wen , Jiansen Wen , Xiong Li , Qiugang Liao , Siqing Yan , Chao Xu , Xiaoliang Zhang , Baisheng Sa , Zhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053
-
[9]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[10]
Junqing WEN , Ruoqi WANG , Jianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243
-
[11]
Huiwei Ding , Bo Peng , Zhihao Wang , Qiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048
-
[12]
Shenhao QIU , Qingquan XIAO , Huazhu TANG , Quan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104
-
[13]
Zhihao HE , Jiafu DING , Yunjie WANG , Xin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390
-
[14]
Jia Zhou , Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004
-
[15]
Yaping Li , Sai An , Aiqing Cao , Shilong Li , Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185
-
[16]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[17]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[18]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030
-
[19]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[20]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[1]
Metrics
- PDF Downloads(41)
- Abstract views(595)
- HTML views(42)