Citation: GAO Hai-Li, LI Xiao-Long, HE Wei, GUO Rui-Ting, CHAI Bo. One-Step Synthesis of Reduced Graphene Oxide Supported Pt Nanoparticles and Its Electrocatalytic Activity for Methanol Oxidation[J]. Acta Physico-Chimica Sinica, ;2015, 31(11): 2117-2123. doi: 10.3866/PKU.WHXB201509181 shu

One-Step Synthesis of Reduced Graphene Oxide Supported Pt Nanoparticles and Its Electrocatalytic Activity for Methanol Oxidation

  • Corresponding author: GAO Hai-Li, 
  • Received Date: 8 May 2015
    Available Online: 16 September 2015

    Fund Project: 国家自然科学基金(U1404201) (U1404201) 全国大学生创新创业训练计划(201310462099) (201310462099) 郑州轻工业学院青年骨干教师培养计划(2013XGGJS007) (2013XGGJS007) 河南省教育厅重点项目(13A530362) (13A530362)郑州轻工业学院博士基金(2011BSJJ020)资助项目 (2011BSJJ020)

  • In this study, graphite oxide was prepared from natural graphite powder using a modified Hummers method. Well-dispersed Pt nanoparticles were synthesized on reduced graphene oxide (RGO) via a simple one-step chemical reduction method in ethylene glycol (EG) by simultaneous reduction of graphene oxide (GO) and chloroplatinic acid. The microstructure, composition, and morphology of the synthesized materials were characterized with Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM). It is shown that the GO was reduced to RGO, and the Pt nanoparticles with an average particle size of 2.3 nm were well dispersed on the surface of RGO. The catalytic performance of the catalysts for methanol oxidation was investigated by cyclic voltammetry and amperometric method, which indicated that Pt/RGO catalyst had higher electrocatalytic activity and stability for the oxidation of methanol than the Pt/C and Pt/CNT catalysts. The If/Ib of Pt/RGO reached 1.3, which was 2.2 and 1.9 times as high as those of Pt/C and Pt/CNT catalysts, respectively, revealing that Pt/RGO had high poisoning tolerance to the COad intermediate species produced in the methanol oxidation reaction.
  • 加载中
    1. [1]

      (1) Zhao, H. B.; Li, L.; Yang, J.; Zhang, Y. M. Electrochem. Commun. 2008, 10 (10), 1527. doi: 10.1016/j.elecom.2008.07.047

    2. [2]

      (2) Hamel, C.; Garbarino, S. B.; Irissou, E. R.; Bichat, M. P.; Guay, D. J. Phys. Chem. C 2010, 114 (44), 18931. doi: 10.1021/jp105706y

    3. [3]

      (3) Lee, S. H.; Kakati, N.; Jee, S. H.; Maiti, J.; Yoon, Y. S. Mater. Lett. 2011, 65 (21-22), 3281.

    4. [4]

      (4) Navaee, A.; Salimi, A.; Soltanian, S.; Servati, P. J. Power Sources 2015, 277 (3), 268.

    5. [5]

      (5) Zhou, X.; Gan, Y.; Du, J.; Tian, D.; Zhang, R.; Yang, C.; Dai, Z. J. Power Sources 2013, 232 (6), 310.

    6. [6]

      (6) Cai, Z. X.; Liu, C. C.; Wu, G. H.; Chen, X. M.; Chen, X. Electrochim. Acta 2014, 127 (5), 377.

    7. [7]

      (7) Du, S.; Lu, Y.; Steinberger-Wilckens, R. Carbon 2014, 79 (11), 346.

    8. [8]

      (8) Gao, H.; Liao, S.; Zeng, J.; Xie, Y. J. Power Sources 2011, 196 (1), 54. doi: 10.1016/j.jpowsour.2010.07.040

    9. [9]

      (9) Liu, A.; Yuan, M.; Zhao, M.; Lu, C.; Zhao, T.; Li, P.; Tang, W. J. Alloy. Compd. 2014, 586 (2), 99.

    10. [10]

      (10) Zhang, Y.; Chang, G.; Shu, H.; Oyama, M.; Liu, X.; He, Y. J. Power Sources 2014, 262 (9), 279.

    11. [11]

      (11) Xu, C.; Hou, J.; Pang, X.; Li, X.; Zhu, M.; Tang, B. Int. J. Hydrog. Energy 2012, 37 (14), 10489. doi: 10.1016/j.ijhydene.2012.04.041

    12. [12]

      (12) Liang, Q.; Zhang, L.; Cai, M.; Li, Y.; Jiang, K.; Zhang, X.; Shen, P. K. Electrochim. Acta 2013, 111 (11), 275.

    13. [13]

      (13) Lu, J.; Zhou, Y.; Tian, X.; Xu, X.; Zhu, H.; Zhang, S.; Yuan, T. Appl. Surf. Sci. 2014, 317 (10), 284.

    14. [14]

      (14) Liu, C. S.; Liu, X. C.; Wang, G. C.; Liang, R. P.; Qiu, J. D. J. Electroanal. Chem. 2014, 728 (8), 41.

    15. [15]

      (15) Liu, H.; Song, C.; Zhang, L.; Zhang, J.; Wang, H.; Wilkinson, D. P. J. Power Sources 2006, 155 (2), 95. doi: 10.1016/j.jpowsour.2006.01.030

    16. [16]

      (16) Mikołajczuk, A.; Borodzinski, A.; Kedzierzawski, P.; Stobinski, L.; Mierzwa, B.; Dziura, R. Appl. Surf. Sci. 2011, 257 (19), 8211. doi: 10.1016/j.apsusc.2011.04.078

    17. [17]

      (17) Kakaei, K.; Zhiani, M. J. Power Sources 2013, 225 (3), 356.

    18. [18]

      (18) Kakati, N.; Maiti, J.; Lee, S. H.; Yoon, Y. S. Int. J. Hydrog. Energy 2012, 37 (24), 19055. doi: 10.1016/j.ijhydene.2012. 09.083

    19. [19]

      (19) Jung, J.; Park, B.; Kim, J. Nanoscale Res. Lett. 2012, 7 (1), 1. doi: 10.1186/1556-276X-7-1

    20. [20]

      (20) Abanin, D. A.; Morozov, S. V.; Ponomarenko, L. A.; Gorbachev, R. V.; Mayorov, A. S.; Katsnelson, M. I.; Watanabe, K.; Taniguchi, T.; Novoselov, K. S.; Levitov, L. S.; Geim, A. K. Science 2011, 332 (6027), 328. doi: 10.1126/science.1199595

    21. [21]

      (21) Bragaru, A.; Vasile, E.; Obreja, C.; Kusko, M.; Danila, M.; Radoi, A. Mater. Chem. Phys. 2014, 146 (3), 538. doi: 10.1016/j.matchemphys.2014.04.012

    22. [22]

      (22) Jothi, P. R.; Kannan, S.; G, V. J. Power Sources 2015, 277 (3), 350.

    23. [23]

      (23) Chen, H.; Duan, J.; Zhang, X.; Zhang, Y.; Guo, C.; Nie, L.; Liu, X. Mater. Lett. 2014, 126 (7), 9.

    24. [24]

      (24) Huang, H.; Chen, H.; Sun, D.; Wang, X. J. Power Sources 2012, 204 (4), 46.

    25. [25]

      (25) Hu, Y.; Wu, P.; Zhang, H.; Cai, C. Electrochim. Acta 2012, 85 (15), 314.

    26. [26]

      (26) Hassan, H. M. A.; Abdelsayed, V.; Khder, A. E. R. S.; AbouZeid, K. M.; Terner, J.; El-Shall, M. S.; Al-Resayes, S. I.; El-Azhary, A. A. J. Mater. Chem. 2009, 19 (23), 3832. doi: 10.1039/b906253j

    27. [27]

      (27) Chien, C. C.; Jeng, K. T. Mater. Chem. Phys. 2006, 99 (1), 80. doi: 10.1016/j.matchemphys.2005.09.080

    28. [28]

      (28) Liu, Z.; Lee, J. Y.; Chen, W.; Han, M.; Gan, L. M. Langmuir 2003, 20 (1), 181.

    29. [29]

      (29) Zhang, J.; Yang, H.; Shen, G.; Cheng, P.; Zhang, J.; Guo, S. Chem. Commun. 2010, 46 (7), 1112. doi: 10.1039/B917705A

    30. [30]

      (30) Ji, Z.; Shen, X.; Zhu, G.; Chen, K.; Fu, G.; Tong, L. J. Electroanal. Chem. 2012, 682 (8), 95.

    31. [31]

      (31) Georgakilas, V.; Gournisb, D.; Tzitziosa, V.; Pasquato, L.; Guldie, D. M.; Prato, M. J. Mater. Chem. 2007, 17 (26), 2679. doi: 10.1039/b700857k

    32. [32]

      (32) Yoo, E.; Okata, T.; Akita, T.; Kohyama, M.; Nakamura, J.; Honma, I. Nano Lett. 2009, 9 (6), 2255. doi: 10.1021/nl900397t

    33. [33]

      (33) Zhou, Y. K.; He, B. L.; Zhou, W. J.; Huang, J.; Li, X. H.; Wu, B.; Li, H. L. Electrochim. Acta 2004, 49 (2), 257. doi: 10.1016/j.electacta.2003.08.007

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    3. [3]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    4. [4]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    5. [5]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    6. [6]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    9. [9]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    10. [10]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    11. [11]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    12. [12]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    13. [13]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    14. [14]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    15. [15]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    16. [16]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    17. [17]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    18. [18]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    19. [19]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    20. [20]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

Metrics
  • PDF Downloads(118)
  • Abstract views(684)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return