Citation:
YANG Mei-Ni, LIN Rui, FAN Ren-Jie, ZHAO Tian-Tian, ZENG Hao. Preparation and Application of Pt-Ni Catalysts Supported on Cobalt-Polypyrrole-Carbon for Fuel Cells[J]. Acta Physico-Chimica Sinica,
;2015, 31(11): 2131-2138.
doi:
10.3866/PKU.WHXB201509171
-
By using pulse-microwave assisted chemical reduction, we prepared a Pt-Ni alloy supported on a cobalt-polypyrrole-carbon (Co-PPy-C) catalyst. The catalyst microstructure and morphology were characterized by using transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrocatalytic performance and durability of the catalysts were measured with cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The metal particles were well dispersed on the carbon support, and the particle size of PtNi/Co-PPy-C was about 1.77 nm. XRD showed that the Pt(111) diffraction peak was strongest, so the most of the Pt in the catalysts was in a face-centered cubic lattice. The electrochemical surface area (ECSA) of PtNi/Co-PPy-C (72.5 m2·g-1) was higher than that of Pt/C(JM) (56.9 m2·g-1). After an accelerated durability test for 5000 cycles, the particle size of PtNi/Co-PPy-C obviously increased. The degradation rate of ECSA and the mass activity (MA) of PtNi/Co-PPY-C were 38.2% and 63.9%, respectively. We applied the PtNi/Co-PPy-C catalyst after optimizing the membrane electrode assembly (MEA) with an area of 50 cm2. The fuel cell could be suitably operated at 70 ℃ with a back pressure of 50 kPa. At these conditions, the maximum power density of MEA by PtNi/Co-PPy-C was 523 mW·cm-2. The excellent performance of PtNi/Co-PPy-C makes it a promising catalyst for proton exchange membrane fuel cells (PEMFCs).
-
-
-
[1]
(1) Zhang, J.; Tang, S. H.; Liao, L. Y.; Yu, W. F. Chin. J. Catal. 2013, 34, 1051. [张洁, 唐水花, 廖龙渝, 郁卫飞. 催化学报, 2013, 34, 1051.] doi: 10.1016/S1872-2067(12)60588-9
-
[2]
(2) Huang, Z.; Lin, R.; Fan, R. J.; Fan, Q. B.; Ma, J. X. Electrochim. Acta 2014, 139, 48.
-
[3]
(3) Shen, Q.; Hou, M.; Liang, D.; Zhou, Z. M.; Li, X. J.; Shao, Z. G.; Yi, B. L. J Power Sources 2009, 189 (2), 1114. doi: 10.1016/j.jpowsour.2008.12.075
-
[4]
(4) Yuasa, M.; Yamaguchi, A.; Itsuki, H.; Tanaka, K.; Yamamoto, M.; Oyaizu, K. Chem. Mater. 2005, 17 (17), 4278. doi: 10.1021/cm050958z
-
[5]
(5) Bashyam, R.; Zelenay, P. Nature 2006, 443 (7107), 63. doi: 10.1038/nature05118
-
[6]
(6) Fan, R. J.; Lin, R.; Huang, Z.; Zhao, T. T.; Ma, J. X. Acta Phys-Chim Sin. 2014, 30 (7), 1259. [范仁杰, 林瑞, 黄真, 赵天天, 马建新. 物理化学学报, 2014, 30 (7), 1259.] doi: 10.3866/PKU.WHXB201405045
-
[7]
(7) Dai, X. F.; Zhen, M. F.; Xu, P.; Shi, J. J.; Ma, C. Y.; Qiao, J. L. Acta Phys. -Chim. Sin. 2013, 29 (8), 1753. [戴先逢, 郑明富, 徐攀, 石晶晶, 马承禺, 乔锦丽. 物理化学学报, 2013, 29 (8), 1753.] doi: 10.3866/PKU.WHXB201306141
-
[8]
(8) Li, S.; Wang, J. T.; Chen, R. X.; Zhao, W.; Qian, L.; Pan, M. Acta Phys. -Chim. Sin. 2013, 29 (4), 792. [李赏, 王家堂, 陈锐鑫, 赵伟, 钱柳, 潘牧. 物理化学学报, 2013, 29 (4), 792.] doi: 10.3866/PKU.WHXB201302221
-
[9]
(9) Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Applied Catalysis B: Environmental 2005, 56 (1-2), 9. doi: 10.1016/j.apcatb.2004.06.021
-
[10]
(10) Carpenter, M. K.; Moylan, T. E.; Kukreja, R. S.; Atwan, M. H.; Tessema, M. M. J. Am. Chem. Soc. 2012, 134 (20), 8535. doi: 10.1021/ja300756y
-
[11]
(11) Loukrakpam, R.; Luo, J.; He, T.; Chen, Y. S.; Xu, Z. C.; Njoki, P. N.; Wanjala, B. N.; Fang, B.; Mott, D.; Yin, J.; Klar, J.; Powell, B.; Zhong, C. J. J. Phys. Chem. C 2011, 115 (5), 1682. doi: 10.1021/jp109630n
-
[12]
(12) Zhao, J.; Huang, S. Y.; Chen, W. X. Journal of Zhejiang Univiersity (Engineering Science) 2009, 43 (5), 962. [赵杰, 黄思玉, 陈卫祥. 浙江大学学报(工学版), 2009, 43 (5), 962.]
-
[13]
(13) Hsieh, C. T.; Lin, J. Y.; Wei, J. L. Int. J. Hydrog. Energy 2009, 34 (2), 685. doi: 10.1016/j.ijhydene.2008.11.008
-
[14]
(14) Harada, J.; Ohshima, K. Surface Science 1981, 106 (1), 51.
-
[15]
(15) Mokrane, S.; Makhloufi, L.; Alonso-Vante, N. J. Solid State Electr. 2008, 12 (5), 569. doi: 10.1007/s10008-007-0398-x
-
[16]
(16) Yuasa, M.; Oyaizu, K.; Murata, H.; Tanaka, K.; Yamamoto, M.; Sasaki, S. Electrochemistry 2007, 75 (10), 800. doi: 10.5796/electrochemistry.75.800
-
[17]
(17) Yang, M. N.; Lin, R.; Zhang, L.; Fan, R. J.; Ma, J. X. Chemical Industry and Engineering Progress 2014, 33 (12), 3230. [杨美妮, 林瑞, 张路, 范仁杰, 马建新. 化工进展, 2014, 33 (12), 3230.]
-
[18]
(18) Kim, K. T.; Hwang, J. T.; Kim, Y. G.; Chung, J. S. ChemInform 2010, 24 (14).
-
[19]
(19) Cui, X.; Lin, R.; Zhao, T. T.; Yang, M. N.; Ma, J. X. Chemical Industry and Engineering Progress 2014, 33 (1), 150. [崔鑫, 林瑞, 赵天天, 杨美妮, 马建新. 化工进展, 2014, 33 (1), 150.]
-
[20]
(20) Unni, S. M.; Dhavale, V. M.; Pillai, V. K.; Kurungot, S. H. J. Phys. Chem. C 2010, 114 (34), 14654. doi: 10.1021/jp104664t
-
[21]
(21) Li, H.; Tang, Y. H.; Wang, Z. W.; Shi, Z.; Wu, S. H.; Song, D. T.; Zhang, J. L.; Fatih, K.; Zhang, J. J.; Wang, H. J.; Liu, Z. S.; Abouatallah, R.; Mazza, A. J. Power Sources 2008, 178 (1), 103.
-
[22]
(22) Lin, R.; Cao, C. H.; Ma, J. X.; Gulzow, E.; Friedrich, K. A. Int. J. Hydrog. Energy 2012, 37 (4), 3373. doi: 10.1016/j.ijhydene.2011.11.046
-
[23]
(23) Yousfi-Steiner, N.; Mocoteguy, P.; Candusso, D.; Hissel, D.; Hernandez, A.; Aslanides, A. J. Power Sources 2008, 183 (1), 260. doi: 10.1016/j.jpowsour.2008.04.037
-
[24]
(24) Tang, W. C.; Lin, R.; Weng, Y. M.; Zhang, J. M.; Ma, J. X. Int. J. Hydrog. Energy 2013, 38 (25), 10985. doi: 10.1016/j.ijhydene.2013.01.099
-
[25]
(25) Dhanushkodi, S. R.; Kundu, S.; Fowler, M. W.; Pritzker, M. D. J. Power Sources 2014, 245, 1035. doi: 10.1016/j.jpowsour.2013.07.016
-
[26]
(26) Schmittinger, W.; Vahidi, A. J. Power Sources 2008, 180 (1), 1. doi: 10.1016/j.jpowsour.2008.01.070
-
[1]
-
-
-
[1]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005
-
[2]
Xichen YAO , Shuxian WANG , Yun WANG , Cheng WANG , Chuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384
-
[3]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[4]
Yixuan Wang , Canhui Zhang , Xingkun Wang , Jiarui Duan , Kecheng Tong , Shuixing Dai , Lei Chu , Minghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004
-
[5]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[6]
Dong Xiang , Kunzhen Li , Kanghua Miao , Ran Long , Yujie Xiong , Xiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027
-
[7]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012
-
[8]
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
-
[9]
Jingyi Xie , Qianxi Lü , Weizhen Qiao , Chenyu Bu , Yusheng Zhang , Xuejun Zhai , Renqing Lü , Yongming Chai , Bin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021
-
[10]
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
-
[11]
Zhaoyu Wen , Na Han , Yanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001
-
[12]
Pengcheng Yan , Peng Wang , Jing Huang , Zhao Mo , Li Xu , Yun Chen , Yu Zhang , Zhichong Qi , Hui Xu , Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047
-
[13]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[14]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[15]
Zhongyan Cao , Youzhi Xu , Menghua Li , Xiao Xiao , Xianqiang Kong , Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017
-
[16]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[17]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[18]
Ru SONG , Biao WANG , Chunling LU , Bingbing NIU , Dongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397
-
[19]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[20]
Yuanyuan JIANG , Fangfang TU , Yuhong ZHANG , Shi CHEN , Jiayuan XIANG , Xinhui XIA . Preparation and electrochemical properties of high-stability cathode prelithiation additive. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1101-1111. doi: 10.11862/CJIC.20240441
-
[1]
Metrics
- PDF Downloads(48)
- Abstract views(436)
- HTML views(5)