Citation: XU Chun-Long, WANG Jin-Guo, ZHANG Xiang-Yu. Strong Single-Band Down-Conversion Emission in Tm3+-Doped NaYF4 Microparticles[J]. Acta Physico-Chimica Sinica, ;2015, 31(11): 2183-2190. doi: 10.3866/PKU.WHXB201509142 shu

Strong Single-Band Down-Conversion Emission in Tm3+-Doped NaYF4 Microparticles

  • Corresponding author: ZHANG Xiang-Yu, 
  • Received Date: 15 June 2015
    Available Online: 14 September 2015

    Fund Project: 中央高校基本科研业务费专项资金(2013G1121085, 310812152001) (2013G1121085, 310812152001)国家自然科学基金(51101022)资助项目 (51101022)

  • We synthesized Tm3+-doped NaYF4 microcrystals with various length-to-diameter ratios by using a facile hydrothermal method assisted with sodium citrate from precursor solutions with various pH values. The β-NaYF4:Tm3+ samples were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared (FT-IR) spectroscopy, and photoluminescence spectroscopy. XRD and SEM show that as the pH of the precursor solutions increased, the morphology of the microcrystals changed from long rods to short microprisms to microplates. We also investigated the luminescence properties of the β-NaYF4:Tm3+ hexagonal microdisks and microrods. By selectively exciting the NaYF4:Tm3+ microcrystals with a 656-nm pulsed laser at a pulse duration of 10 ns, they exhibited a strong single-band down-conversion emission at 800 nm. We systematically studied how the excitation wavelength, temperature, and length-to-diameter ratio of the particles affected the luminescence intensity of their near-infrared (NIR) single-band emission. As the length-to-diameter ratio of the NaYF4:Tm3+ microcrystals increased, their luminescence intensity strengthened. Exploring the reason for this luminescence enhancement, we propose a mechanism based on vacancy defects.
  • 加载中
    1. [1]

      (1) Chen, X. Y.; Liu, Y. S.; Tu, D. T. Lanthanide-doped Luminescent Nanomaterials: from Fundamentals to Bioapplications; Springer-Verlag Press: Heidelberg, 2014; pp 125-187.

    2. [2]

      (2) MacDougall, S. K. W.; Ivaturi, A.; Marques-Hueso, J.; Krä mer, K. W.; Richards, B. S. Sol. Energy Mater. Sol. Cells 2014, No. 128, 18. doi: 10.1016/j.solmat.2014.05.004

    3. [3]

      (3) Chen, G. Y.; Qiu, H. L.; Prasad, P. N.; Chen, X. Y. Chem. Rev. 2014, 114 (10), 5161. doi: 10.1021/cr400425h

    4. [4]

      (4) Zheng, W.; Tu, D. T.; Liu, Y. S.; Luo, W. Q.; Ma, E.; Zhu, H. M.; Chen, X. Y. Scientia Sinica Chimica 2014, 44 (2), 168. [郑伟, 涂大涛, 刘永升, 罗文钦, 马恩, 朱浩淼, 陈学元. 中国科学: 化学, 2014, 44 (2), 168.] doi: 10.1360/N032013-00041

    5. [5]

      (5) Wang, F.; Banerjee, D.; Liu, Y. S.; Chen, X. Y.; Liu, X. G. Analyst 2010, 135 (8), 1839. doi: 10.1039/C0AN00144A

    6. [6]

      (6) Ge, X. Y.; Yuan, Q. J. Wuhan Univ. (Nat. Sci. Ed.) 2015, 61, 10. [葛雪莹, 袁荃. 武汉大学学报: 理学版, 2015, 61, 10.]

    7. [7]

      (7) Hampl, J.; Hall, M.; Mufti, N. A.; Yao, Y. M.; MacQueen, D. B.; Wright, W. H.; Cooper, D. E. Anal. Biochem. 2001, 288 (2), 176. doi: 10.1006/abio.2000.4902

    8. [8]

      (8) Zou, W. Q.; Visser, C.; Maduro, J. A.; Pshenichnikov, M. S.; Hummelen, J. C. Nat. Photonics 2012, 6 (8), 560. doi: 10.1038/nphoton.2012.158

    9. [9]

      (9) Xie, X. J.; Liu, X. G. Nat. Mater. 2012, 11 (10), 842. doi: 10.1038/nmat3426

    10. [10]

      (10) Kumar, R. A.; Arivanandhan, M.; Hayakawa, Y. Progress in Crystal Growth and Characterization of Materials 2013, 59 (3), 113. doi: 10.1016/j.pcrysgrow.2013.07.001

    11. [11]

      (11) Karaveli, S.; Zia, R. Phys. Rev. Lett. 2011, 106 (19), 193004. doi: 10.1103/PhysRevLett.106.193004

    12. [12]

      (12) Wang, F.; Liu, X. Accounts Chem. Res. 2014, 47 (4), 1378. doi: 10.1021/ar5000067

    13. [13]

      (13) Lu, Q.; Hou, Y.; Tang, A.; Wu, H.; Teng, F. Appl. Phys. Lett. 2013, 102 (23), 233103. doi: 10.1063/1.4811175

    14. [14]

      (14) Gao, D.; Zhang, X.; Gao, W. J. Appl. Phys. 2012, 111 (3), 033505. doi: 10.1063/1.3681293

    15. [15]

      (15) Tian, D. P.; Gao, D. L.; Chong, B.; Liu, X. Z. Dalton Trans. 2015, 44 (9), 4133. doi: 10.1039/C4DT03735A

    16. [16]

      (16) Deng, T. L.; Yan, S. R.; Hu, J. G. Acta Phys. -Chim. Sin. 2014, 30 (4), 773. [邓陶丽, 闫世润, 胡建国. 物理化学学报, 2014, 30 (4), 773.] doi: 10.3866/PKU.WHXB201402201

    17. [17]

      (17) Zhang, X. Y.; Li, L.; Gao, D. L.; Zheng, H. R. Spectrosc. Spect. Anal. 2009, 29, 2738. [张翔宇, 李林, 高当丽, 郑海荣. 光谱学与光谱分析, 2009, 29, 2738.]

    18. [18]

      (18) Nasim, H.; Jamil, Y. Optics & Laser Technology 2014, 56, 211. doi: 10.1016/j.optlastec.2013.08.012

    19. [19]

      (19) Wu, J.; Yao, Z.; Zong, J.; Jiang, S. Opt. Lett. 2007, 32 (6), 638. doi: 10.1364/OL.32.000638

    20. [20]

      (20) Zheng, L. J.; Li, Y. X.; Liu, H. L.; Xu, W.; Zhang, Z. G. Acta Phys. Sin. 2013, 62 (24), 240701. [郑龙江, 李雅新, 刘海龙, 徐伟, 张治国. 物理学报, 2013, 62 (24), 240701.] doi: 10.7498/aps.62.240701

    21. [21]

      (21) Zhang, X. Y.; Gao, D. L.; Zheng, H. R. Chin. Phys. B 2008, 17 (11), 4328. doi: 10.1088/1674-1056/17/11/061

    22. [22]

      (22) Gao, D. L.; Tian, D. P.; Xiao, G. Q.; Chong, B.; Yu, G. H.; Pang, Q. Opt. Lett. 2015, 40 (15), 3580. doi: 10.1364/OL.40.003580

    23. [23]

      (23) Krä mer, K. W.; Biner, D.; Frei, G.; Gü del, H. U.; Hehlen, M. P.; Lü thi, S. R. Chem. Mater. 2004, 16 (7), 1244. doi: 10.1021/cm031124o

    24. [24]

      (24) Gao, D. L.; Gao, W.; Shi, P.; Li, L. RSC Adv. 2013, 3 (34), 14757. doi: 10.1039/C3RA40517F

    25. [25]

      (25) Gao, D. L.; Zhang, X. Y.; Zheng, H. R.; Shi, P.; Li, L.; Ling, Y. W. Dalton Trans. 2013, 42 (5), 1834. doi: 10.1039/C2DT31814H

    26. [26]

      (26) Yi, G.; Lu, H.; Zhao, S.; Ge, Y.; Yang, W.; Chen, D.; Guo, L. H. Nano Lett. 2004, 4 (11), 2191. doi: 10.1021/nl048680h

    27. [27]

      (27) Gao, D.; Zhang, X.; Gao, W. ACS Appl. Mater. Interfaces 2013, 5 (19), 9732. doi: 10.1021/am402843h

    28. [28]

      (28) Zhang, X. Y.; Gao, D. L.; Li, L. J. Appl. Phys. 2010, 107 (12), 123528. doi: 10.1063/1.3436569

    29. [29]

      (29) Gao, D. L.; Zhang, X. Y.; Zhang, Z. L.; Xu, L. M.; Lei, Y.; Zheng, H. R. Acta Phys. Sin. 2009, 58 (9), 6108. [ 高当丽, 张翔宇, 张正龙, 徐良敏, 雷瑜, 郑海荣. 物理学报, 2009, 58 (9), 6108.] doi: 10.7498/aps.58.6108

    30. [30]

      (30) Gao, D. L.; Zheng, H. R.; Tian, Y.; Cui, M.; Lei, Y.; He, E. J.; Zhang, X. S. J. Nanosci. Nanotech. 2010, 10 (11), 7694. doi: 10.1166/jnn.2010.2787

    31. [31]

      (31) Miyakawa, T.; Dexter, D. L. Phys. Rev. B 1970, 1 (7), 2961. doi: 10.1103/PhysRevB.1.2961

    32. [32]

      (32) Liu, G. K. Chem. Soc. Rev. 2015, 44 (6), 163. doi: 10.1039/c4cs00187g

    33. [33]

      (33) Zhang, S. Y. Spectroscopy of Rare Earth Ions: Spectral Property and Spectral Theory; Science Press: Beijing, 2008; pp 138-153. [张思远. 稀土离子的光谱学: 光谱性质和光谱理论. 北京: 科学出版社, 2008: 138-153.]

    34. [34]

      (34) Fu, J. X.; Fu, X. H.; Wang, C. M.; Yang, X. F.; Zhuang, J. L.; Zhang, G. G.; Lai, B. Y.; Wu, M. M.; Wang, J. Eur. J. Inorg. Chem. 2013, 2013 (8), 1269. doi: 10.1002/ejic.201201278

    35. [35]

      (35) Wu, Z.; Lin, M.; Liang, S.; Liu, Y.; Zhang, H.; Yang, B. Part. Part. Syst. Charact. 2013, 30 (4), 311. doi: 10.1002/ppsc.201200106

  • 加载中
    1. [1]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    2. [2]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    3. [3]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

    6. [6]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    7. [7]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    8. [8]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    9. [9]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    10. [10]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    11. [11]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    12. [12]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    13. [13]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    14. [14]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    15. [15]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    16. [16]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    17. [17]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    18. [18]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    19. [19]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    20. [20]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

Metrics
  • PDF Downloads(72)
  • Abstract views(427)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return