Citation: YU Chang-Lin, WEI Long-Fu, LI Jia-De, HE Hong-Bo, FANG Wen, ZHOU Wan-Qin. Preparation and Characterization of /Ag3PO4 Composite Photocatalyst and Its Visible Light Photocatalytic Performance[J]. Acta Physico-Chimica Sinica, ;2015, 31(10): 1932-1938. doi: 10.3866/PKU.WHXB201509064 shu

Preparation and Characterization of /Ag3PO4 Composite Photocatalyst and Its Visible Light Photocatalytic Performance

  • Received Date: 25 June 2015
    Available Online: 6 September 2015

    Fund Project: 国家自然科学基金资助项目(21067004, 21263005, 21567008) (21067004, 21263005, 21567008) 江西省自然科学基金青年科学基金计划(20133BAB21003) (20133BAB21003) 江西省教育厅高等学校科技落地计划项目(KJLD14046) (KJLD14046) 江西省青年科学家培养项目(20122BCB23015) (20122BCB23015)

  • Graphene oxide ( ) was fabricated from graphite powder by Hummers oxidation method and then, under ultrasonic irradiation, a series of /Ag3PO4 composite photocatalysts (4% (w, mass fraction) /Ag3PO4, 8% /Ag3PO4, 16% /Ag3PO4, 32% /Ag3PO4) were synthesized by a facile liquid deposition process. The products were characterized by N2-physical adsorption, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectra, Fourier transform infrared (FT-IR) spectroscopg, and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The effect of content on the photocatalytic activity of Ag3PO4 was evaluated by photocatalytic degradation of methyl orange (MO) under visible light irradiation. The results show that can be easily dispersed into Ag3PO4, producing a well-connected /Ag3PO4 composite. Coupling of largely enhanced the surface area of the catalyst and the adsorption of MO. At the optimal content (16%), the degradation rate of MO over /Ag3PO4 was 83% after 120 min of light irradiation, exhibiting 7.5 times higher activity than that of pure Ag3PO4. The increase in photocatalytic activity and stability can be mainly attributed to the coupling of , which increased the surface area and suppressed the recombination rate of electron-hole (e-/h+) pairs and generated greater numbers of active free radicals.

  • 加载中
    1. [1]

      (1) Zhou, W. Q.; Yu, C. L.; Fan, Q. Z.; Wei, L. F.; Chen, J. C.; Yu, J. C. Chin. J. Catal. 2013, 34, 1250. [周晚琴, 余长林, 樊启哲, 魏龙福, 陈建钗, Yu, J. C. 催化学报, 2013,34, 1250.] doi: 10.1016/S1872-2067(12)60578-6

    2. [2]

      (2) Jin, R. R.; You, J. G.; Zhang, Q.; Liu, D.; Hu, S. Z.; Gui, J. Z. Acta Phys. -Chim. Sin. 2014, 30, 1706. [金瑞瑞, 游继光, 张倩, 刘丹, 胡绍争, 桂建舟. 物理化学学报,2014, 30, 1706.] doi: 10.3866/PKU.WHXB201406272

    3. [3]

      (3) Yu, C. L.; Cao, F. F.; Shu, Q.; Bao, Y. L.; Xie, Z. P.; Yu, J. C.; Yang, K. Acta Phys.-Chim. Sin. 2012, 28, 647. [余长林, 操芳芳, 舒庆, 包玉龙, 谢志鹏, Yu J. C, 杨凯. 物理化学学报, 2012, 28, 647.] doi: 10.3866/PKU.WHXB201201051

    4. [4]

      (4) Yu, C. L.; Yang, K.; Yu, J. C.; Peng, P.; Cao, F. F.; Li, X.; Zhou, X. C. Acta Phys. -Chim. Sin. 2011, 27, 505. [余长林, 杨凯, 余济美, 彭鹏, 操芳芳, 李鑫, 周晓春. 物理化学学报, 2011, 27, 505.] doi: 10.3866/PKU.WHXB20110230

    5. [5]

      (5) Yu, G. H.; Xu, L. L.; Wang, P.; Wang, X. F.; Yu, J. G. Appl. Catal. B 2014, 144, 75. doi: 10.1016/j.apcatb.2013.06.023

    6. [6]

      (6) Yi, Z. G.; Ye, J. H.; Kikugawan, N.; Kako, T.; Ouyang, S. X.; Stuart-Williams, H.; Yang, H.; Cao, J. Y.; Luo, W. J.; Li, Z. S.; Withers, R. L. Nat. Mater. 2010, 9, 559. doi: 10.1038/nmat2780

    7. [7]

      (7) Ge, M.; Tan, M. M.; Cui, G. H. Acta Phys. -Chim. Sin. 2014, 30, 2107. [葛明, 谭勉勉, 崔广华. 物理化学学报, 2014, 30, 2107.] doi: 10.3866/PKU.WHXB201409041

    8. [8]

      (8) Wang, X. F.; Li, S. F.; Yu, H. G.; Yu, J. G.; Liu, S. W. Chem. -Eur. J. 2011, 17, 7777. doi: 10.1002/chem.201101032

    9. [9]

      (9) Dai, G. P.; Yu, J. G.; Liu, G. J. Phys. Chem. C 2012, 116, 15519. doi: 10.1021/jp305669f

    10. [10]

      (10) Ouyang, S. X.; Ye, J. H. J. Am. Chem. Soc. 2011, 133, 7757. doi: 10.1021/ja110691t

    11. [11]

      (11) Tsuji, I.; Kato, H.; Kobayashi, H.; Kudo, A. J. Am. Chem. Soc. 2004, 126, 13406. doi: 10.1021/ja048296m

    12. [12]

      (12) Wang, D.; Kako, T.; Ye, J. J. Phys. Chem. C 2009, 113, 3785.

    13. [13]

      (13) Bi, Y. P.; Ouyang, S. X.; Cao, J. Y.; Ye, J. H. Phys. Chem. Chem. Phys. 2011, 13, 10071. doi: 10.1039/c1cp20488b

    14. [14]

      (14) Yu, C. L.; Zhou, W. Q.; Yu, J. C.; Liu, H.; Wei, L. F. Chin. J. Catal. 2014, 35, 1609. [余长林, 周晚琴, 余济美, 刘鸿, 魏龙福. 催化学报, 2014, 35, 1609.] doi:10.1016/S1872-2067(14)60170-4

    15. [15]

      (15) Yu, C. L.; Li, G.; Kumar, S.; Yang, K.; Jin, R. C. Adv. Mater. 2014, 26, 892. doi: 10.1002/adma.v26.6

    16. [16]

      (16) Liu, S. Q.; Wang, S.; Dai, G. P.; Lu, J.; Liu, K. Acta Phys. -Chim. Sin. 2014, 30, 2121. [刘素芹, 王松, 戴高鹏, 鲁俊, 刘科. 物理化学学报, 2014, 30, 2121.] doi: 10.3866/PKU.WHXB201409191

    17. [17]

      (17) Liu, J. B.; Yi, Y.; Shi, P. H.; Wang, Q.; Li, D. X.; Hussain, A.; Yang, M. Acta Phys. -Chim. Sin. 2014, 30, 1720. [李洁冰, 伊玉, 时鹏辉, 王倩, 李登新, Hussain A., 杨明. 物理化学学报, 2014, 30, 1720.] doi: 10.3866/PKU.WHXB201407021

    18. [18]

      (18) Zhang, Q. Q.; Li, R.; Zhang, M. M.; u, X. L. Acta Phys. -Chim. Sin. 2014, 30, 476. [张晴晴, 李容, 张萌萌, 苟兴龙. 物理化学学报, 2014, 30, 476.] doi: 10.3866/PKU.WHXB201401071

    19. [19]

      (19) Liu, J. X.; Wang, Y. F.; Wang, Y. W.; Fan, C. M. Acta Phys. -Chim. Sin. 2014, 30, 729. [刘建新, 王韵芳, 王雅文, 樊彩梅. 物理化学学报, 2014, 30, 729.] doi: 10.3866/PKU.WHXB201402243

    20. [20]

      (20) Geng, J. Y.; Zhu, X. S.; Du, Y. K. Chin. J. Inorg. Chem. 2012, 28, 357. [耿静漪, 朱新生, 杜玉扣. 无机化学学报, 2012, 28, 357.]

    21. [21]

      (21) Wang, C.; Cao, M. H.; Wang, P. F.; Ao, Y. H.; Hou, J.; Qian, J. Appl. Catal. A 2014, 473, 83. doi: 10.1016/j.apcata.2013.12.028

    22. [22]

      (22) Hu, J.; Li, H. S.; Wu, Q.; Zhao, Y.; Jiao, Q. Z. Chem. Eng. J. 2015, 263, 144. doi: 10.1016/j.cej.2014.11.007

    23. [23]

      (23) Gao, Y.; Hu, M.; Mi, B. X. J. Membr. Sci. 2014, 455, 349. doi: 10.1016/j.memsci.2014.01.011

    24. [24]

      (24) He, G. L.; Chen, M. J.; Liu, Y. Q.; Li, X.; Liu, Y. J.; Xu, Y. H. Appl. Surf. Sci. 2015, 351, 474. doi: 10.1016/j.apsusc.2015.05.159

    25. [25]

      (25) Chen, Y. L.; Zhang, C. E.; Deng, C.; Fei, P.; Zhong, M.; Su, B. T. Chin. Chem. Lett. 2013, 24, 518. doi: 10.1016/j.cclet.2013.03.034

    26. [26]

      (26) Liu, L.; Liu, J. C.; Sun, D. D. Catal. Sci. Technol. 2012, 2, 2525. doi: 10.1039/c2cy20483e

    27. [27]

      (27) Chen, G. D.; Sun, M.; Wei, Q.; Zhang, Y. F.; Zhu, B. C.; Du, B. J. Hazard. Mater. 2013, 244/245, 86.

    28. [28]

      (28) Long, M.; Cong, Y.; Li, X. K.; Cui, Z. W.; Dong, Z. J.; Yuan, G. M. Acta Phys. -Chim. Sin. 2013, 29, 1344. [龙梅, 丛野, 李轩科, 崔正威, 董志军, 袁观明. 物理化学学报, 2013, 29, 1344.] doi: 10.3866/PKU.WHXB201303263

    29. [29]

      (29) Zhao, H. M.; Su, F.; Fan, X. F.; Yu, H. T.; Wu, D.; Quan, X. Chin. J. Catal. 2012, 33, 777. [赵慧敏, 苏芳, 范新飞, 于洪涛, 吴丹, 全燮. 催化学报, 2012, 33, 777.] doi: 10.1016/S1872-2067(11)60374-4

    30. [30]

      (30) Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'homme, R. K.; Aksay, I. A.; Car, R. Nano. Lett. 2008, 8, 36. doi: 10.1021/nl071822y

    31. [31]

      (31) Yu, C. L.; Wei, L. F.; Zhou, W. Q.; Chen, J. C.; Fan, Q. Z.; Liu, H. Appl. Surf. Sci. 2014, 319, 312. doi: 10.1016/j.apsusc.2014.05.158


  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Zhangyong LIULihui XUYue YANGLiming WANGHong PANXinzhe HUANGXueqiang FUYingxiu ZHANGMeiran DOUMeng WANGYi TENG . Preparation and photocatalytic performance of CsxWO3/TiO2 based on full spectral response. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1445-1464. doi: 10.11862/CJIC.20240345

    4. [4]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    5. [5]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    6. [6]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    7. [7]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    8. [8]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    9. [9]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    12. [12]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    13. [13]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    14. [14]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    15. [15]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    16. [16]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    17. [17]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    18. [18]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    19. [19]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    20. [20]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

Metrics
  • PDF Downloads(216)
  • Abstract views(653)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return