Citation:
LIU Chun-Mei, ZHANG Guo-Ying, ZHANG Xin, XU Yan-Yan, GAO Dong-Zhao. Hydrothermal Synthesis of Ag3PO4 Polyhedrons with Oriented {110} Facets and Visible-Light-Driven Photocatalytic Activity[J]. Acta Physico-Chimica Sinica,
;2015, 31(10): 1939-1948.
doi:
10.3866/PKU.WHXB201508251
-
Ag3PO4 polyhedrons were synthesized by a facile hydrothermal route using polyethylene glycol-6000 (PEG-6000). The effects of hydrothermal temperature, reaction time, and PEG-6000 dosage on the morphologies and structures of the products were systematically investigated. The photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible diffuse reflectance spectra (UV-Vis DRS), and photoluminescence (PL) spectra. The hydrothermal temperature and the PEG dosage are key factors in the production of Ag3PO4 polyhedrons with oriented {110} facets. The Ag3PO4 polyhedrons evolve via Ostwald ripening, and exhibit superior visible-light photocatalytic degradation of Rhodamine B (RhB) relative to Ag3PO4 samples without oriented {110} facets and Ag3PO4 nanoparticles prepared by anion-exchange. The reaction rate constant of the Ag3PO4 polyhedrons was 8.3 times that of the Ag3PO4 nanoparticles. Total organic carbon (TOC) analysis and cycling experiments revealed that the polyhedrons have better mineralization efficiency and exhibit od circulation runs. Holes (h+) and hydroxyl radicals (·OH) are confirmed to be the dominant active species in the presence of radical scavengers and in N2-saturated solution. Given the redox potential of the active species and the band structure of Ag3PO4 polyhedron, the separation and migration mechanism of photogenerated electron-hole (e--h+) pairs at the photocatalytic interface was proposed.
-
-
-
[1]
(1) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
-
[2]
(2) Mohamed, S. H.; El-Hagary, M.; Althoyaib, S. Eur. Phys. J. -Appl. Phys. 2012, 57, 20301. doi: 10.1051/epjap/2012110312
-
[3]
(3) Wang, X. X.; Xu, H. L.; Shen, W.; Ruhlmann, L.; Qin, F.; Sorgues, S.; Colbeau-Justin, C. Acta Phys. -Chim. Sin. 2013, 29, 1837. [王晓夏, 徐华龙, 沈伟, Ruhlmann L., 秦枫, Sorgues S., Colbeau-Justin C. 物理化学学报, 2013, 29, 1837.] doi: 10.3866/PKU.WHXB201307024
-
[4]
(4) Ge, M.; Tan, M. M.; Cui, G. H. Acta Phys. -Chim. Sin. 2014, 30, 2107. [葛明, 谭勉勉, 崔广华. 物理化学学报, 2014, 30, 2107.] doi: 10.3866/PKU.WHXB 201409041
-
[5]
(5) Nakamura, K. J.; Ide, Y.; Ogawa, M. Mater. Lett. 2011, 65, 24. doi: 10.1016/j.matlet.2010.09.043
-
[6]
(6) Tian, G. H.; Fu, H. G.; Jing, L. Q.; Xin, B. F.; Pan, K. J. Phys. Chem. C 2008, 112, 3083. doi: 10.1021/jp710283p
-
[7]
(7) Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Chem. Rev. 2010, 110, 6503. doi: 10.1021/cr1001645
-
[8]
(8) Cheng, H. F.; Huang, B. B.; Dai, Y.; Qin, X. Y.; Zhang, X. Y. Langmuir 2010, 26, 6618. doi: 10.1021/la903943s
-
[9]
(9) Wang, D. F.; Kako, T.; Ye, J. H. J. Am. Chem. Soc. 2008, 130, 2724. doi: 10.1021/ja710805x
-
[10]
(10) Yuhas, B. D.; Smeigh, A. L.; Douvalis, A. P.; Wasielewski, M. R.; Kanatzidis, M. G. J. Am. Chem. Soc. 2012, 134, 10353. doi: 10.1021/ja303640s
-
[11]
(11) Yi, Z. G.; Ye, J. H.; Kikugawa, N.; Kako, T.; Ouyang, S. X.; Stuart-Williams, H. Nat. Mater. 2010, 9, 559. doi: 10.1038/NMAT2780
-
[12]
(12) Ma, X. G.; Lu, B.; Li, D.; Shi, R.; Pan, C. S.; Zhu, Y. F. J. Phys. Chem. C 2011, 115, 4680. doi: 10.1021/jp111167u
-
[13]
(13) Dinh, C. T.; Nguyen, T. D.; Kleitz, F.; Do, T. O. Chem. Commun. 2011, 47, 7797. doi: 10.1039/c1cc12014j
-
[14]
(14) Yu, H. C.; Dong, Q. S.; Jiao, Z. B.; Wang, T.; Ma, J. T.; Lu, G. X.; Bi, Y. P. J. Mater. Chem. A 2014, 2, 1668. doi: 10.1039/c3ta14447j
-
[15]
(15) Hua, X.; Jin, Y. J.; Wang, K.; Li, N.; Liu, H. Q.; Chen, M. D.; Paul, S. S.; Zhang, Y.; Zhao, X. D.; Teng, F. Catal. Commun. 2014, 52, 49. doi.org/10.1016/j
-
[16]
(16) Bi, Y. P.; Hu, H. Y.; Ouyang, S. X.; Jiao, Z. B.; Lu, G. X.; Ye, J. H. J. Mater. Chem. 2012, 22, 14847. doi: 10.1039/c2jm32800c
-
[17]
(17) Bi, Y. P.; Hu, H. Y.; Jiao, Z. B.; Yu, H. C.; Lu, G. X.; Ye, J. H. Phys. Chem. Chem. Phys. 2012, 14, 14486. doi: 10.1039/c2cp42822a
-
[18]
(18) Hu, H. Y.; Jiao, Z. B.; Yu, H. C.; Lu, G. X.; Ye, J. H.; Bi, Y. P. J. Mater. Chem. A 2013, 1, 2387. doi: 10.1039/c2ta01151d
-
[19]
(19) Bi, Y. P.; Ouyang, S. X.; Umezawa, N.; Cao, J. Y.; Ye, J. H. J. Am. Chem. Soc. 2011, 133, 6490. doi: org/10.1021/ja2002132
-
[20]
(20) Dong, P. Y.; Wang, Y. H.; Li, H. H.; Li, H.; Ma, X. L.; Han, L. L. J. Mater. Chem. A 2013, 1, 4651. doi: 10.1039/c3ta00130j
-
[21]
(21) Wang, J.; Teng, F.; Chen, M. D.; Xu, J. J.; Song, Y. Q.; Zhou, X. L. CrystEngComm 2013, 15, 39. doi: 10.1039/c2ce26060c
-
[22]
(22) Yin, Y. D.; Alivisatos, A. P. Nature 2005, 437, 664. doi: 10.1038/nature04165
-
[23]
(23) Hu, L. M.; Lin, C. G.; Wang, L.; Yuan, S. L. Acta Phys. -Chim. Sin. 2014, 30, 2149. [胡立梅, 蔺存国, 王利, 苑世领. 物理化学学报, 2014, 30, 2149.] doi: 10.3866/PKU.WHXB201409021
-
[24]
(24) Mullin, J. W.; Yokota, M.; Mullin, J. W. J. Cryst. Growth 1997, 182, 86. doi: 10.1016/S0022-0248(97)00328-X
-
[25]
(25) Hua, X.; Jin, Y. J.; Wang, K.; Li, N.; Liu, H. Q.; Chen, M. D.; Paul, S. S.; Zhang, Y.; Zhao, X. D.; Teng, F. Catal. Commun. 2014, 52, 49. doi: 10.1016/j.catcom.2014.04.014
-
[26]
(26) Cui, G. W.; Wang, W. L.; Ma, M. Y.; Zhang, M.; Xia, X. Y.; Han, F. Y.; Shi, X. Y.; Zhao, Y. Q.; Dong, Y. B.; Tang, B. Chem. Commun. 2013, 49, 6415. doi: 10.103/c3cc42500b
-
[27]
(27) Zhang, C.; Zhu, Y. F. Chem. Mater. 2005, 17, 3537. doi: 10.1021/cm0501517
-
[28]
(28) Wu, T. X.; Liu, G. M.; Zhao, J. C.; Hiodaka, H.; Serpone, N. J. Phys. Chem. B 1998, 102, 5845. doi: 10.1021/jp980922c
-
[29]
(29) Smith, W.; Mao, S.; Lu, G. H.; Catlett, A.; Chen, J. H.; Zhao, Y. P. Chem. Phys. Lett. 2010, 485, 171. doi: 10.1016/j.cplett.2009.12.041
-
[30]
(30) Indra, A.; Menezes, P. W.; Schwarze, M.; Driess, M. New J. Chem. 2014, 38, 1942. doi: 10.1039/c3nj01012k
-
[31]
(31) Cheng, H. F.; Huang, B. B.; Dai, Y.; Qin, X. Y.; Zhang, X. Y. Langmuir 2010, 26, 6618. doi: 10.1021/la903943s
-
[32]
(32) Ma, S. S.; Li, R.; Lv, C. P.; Xu, W.; u, X. L. J. Hazard. Mater. 2011, 192, 730. doi: 10.1016/j.jhazmat.2011.05.082
-
[33]
(33) Ye, L. Q.; Chen, J. N.; Tian, L. H.; Liu, J. Y.; Peng, T. Y.; Deng, K. J.; Zan, L. Appl. Catal. B 2013, 130-131, 1. doi: 10.1016/j.apcatb.2012.10.011
-
[34]
(34) Liu, W.; Wang, M. L.; Xu, C. X.; Chen, S. F.; Fu, X. L. Mater. Res. Bull. 2013, 48, 106. doi: 10.1016/j.materresbull.2012.10.015
-
[1]
-
-
-
[1]
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052
-
[2]
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ−壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081
-
[3]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014
-
[4]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[5]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[6]
Haitao Wang , Lianglang Yu , Jizhou Jiang , Arramel , Jing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047
-
[7]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005
-
[8]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030
-
[9]
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
-
[10]
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
-
[11]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020
-
[12]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021
-
[13]
Jiawei Hu , Kai Xia , Ao Yang , Zhihao Zhang , Wen Xiao , Chao Liu , Qinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043
-
[14]
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068
-
[15]
Jingping Li , Suding Yan , Jiaxi Wu , Qiang Cheng , Kai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104
-
[16]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005
-
[17]
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039
-
[18]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019
-
[19]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016
-
[20]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007
-
[1]
Metrics
- PDF Downloads(110)
- Abstract views(582)
- HTML views(5)