Citation:
SUN Zhi-Guo, GAO Xiong-Hou, MA Jian-Tai, ZHANG Li, LIU Hong-Hai, WANG Bao-Jie. Effect of Lauryl Sodium Sulfate on the In situ Crystallization of Small-Grain NaY[J]. Acta Physico-Chimica Sinica,
;2015, 31(10): 2011-2015.
doi:
10.3866/PKU.WHXB201508211
-
The in situ crystallization of small-grain NaY in the presence of lauryl sodium sulfate was investigated. The product containing small-grain NaY was used as a matrix to prepare REUSY catalyst via ammonium ion exchange and rare earth ion exchange. X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray fluorescence (XRF), and N2 physical adsorption-desorption were used to characterize the samples, while the catalytic performance of prepared catalysts was evaluated by micro-activity evaluation device and advanced catalytic evaluation (ACE). It is indicated that the addition of lauryl sodium sulfate (5% of Kaolin microsphere mass) to in situ crystallization system can decrease the average grain size of the zeolite from 540 to 250 nm. Relative to the conventional in situ crystallization fluid catalytic cracking (FCC) catalysts, the catalyst prepared from in situ crystallization product containing small-grain NaY exhibits improved performance in the conversion rate of feedstock, the selectivity of the cracking product, and the resistance to carbon deposition.
-
-
-
[1]
(1) Sadeghbeigi, R. Fluid Catalytic Cracking Handbook: an Expert Guide to the Practical Operation, Design, and Optimization of FCC Units, 3rd ed.; Elsevier: Amsterdam, 2012; pp 1-42.
-
[2]
(2) Chen, H. L.; Sheng, B. J.; Pan, H. F. Acta Phys. -Chim. Sin. 2004, 20 (8), 854. [陈洪林, 申宝剑, 潘惠芳. 物理化学学报, 2004, 20 (8), 854.] doi: 10.3866/PKU.WHXB20040814
-
[3]
(3) García-Martínez, J.; Li, K.; Krishnaiah, G. Chem. Commun. 2012, 48 (97), 11841. doi: 10.1039/c2cc35659g
-
[4]
(4) Cao, X. H. Pet. Process. Petroche. 2002, 33 (9), 1. [曹湘洪. 石油炼制与化工, 2002, 33, 1.]
-
[5]
(5) Vuong, G. T.; Hoang, V. T.; Nguyen, D. T.; Do, T. O. Appl. Catal. A: Gen. 2010, 382 (2), 231. doi: 10.1016/j.apcata.2010.04.049
-
[6]
(6) Mastropietro, T. F.; Drioli, E.; Poerio, T. RSC Adv. 2014, 4 (42), 21951. doi: 10.1039/c4ra03376k
-
[7]
(7) Chaves, T. F.; Pastore, H. O.; Cardoso, D. Microporous Mesoporous Mat. 2012, 161, 67. doi: 10.1016/j.micromeso.2012.05.022
-
[8]
(8) Larsen, S. C. J. Phys. Chem. C 2007, 111 (50), 18464. doi: 10.1021/jp074980m
-
[9]
(9) Holmberg, B. A.; Wang, H.; Norbeck, J. M.; Yan, Y. S. Microporous Mesoporous Mat. 2003, 59 (1), 13. doi: 10.1016/S1387-1811(03)00271-3
-
[10]
(10) Chao, Z. S.; Lin, H. Q.; Chen, G. Z.; Wu, T. H.; Wan, H. L.; Min, E. Z. Chem. J. Chin. Univ. 2000, 21 (9), 1353. [晁自胜, 林海强, 陈国周, 吴廷华, 万惠霖, 闵恩泽. 高等学校化学学报, 2000, 21 (9), 1353.]
-
[11]
(11) Chao, Z. S.; Lin, H. Q.; Chen, G. Z.; Wu, T. H.; Wan, H. L.; Min, E. Z. Chem. J. Chin. Univ. 2001, 22 (1), 10. [晁自胜, 林海强, 陈国周, 吴廷华, 万惠霖, 闵恩泽. 高等学校化学学报, 2001, 22 (1), 10.]
-
[12]
(12) Cheng, Z. L.; Chao, Z. S.; Wan, H. L. Acta Phys. -Chim. Sin. 2003, 19 (6), 487. [程志林, 晁自胜, 万惠霖. 物理化学学报, 2003, 19 (6), 487.] doi: 10.3866/PKU.WHXB20030602
-
[13]
(13) Tang, K.; Wang, Y. G.; Song, L. J.; Duan, L. H.; Zhang, X. T.; Sun, Z. L. Mater. Lett. 2006, 60 (17), 2158.
-
[14]
(14) Tan, J.; Chen, Y.; Liu, J.; Wang, Y. H. B. Chin. Ceram. Soc. 2011, 30 (1), 13. [谭涓, 陈颖, 刘靖, 王业红. 硅酸盐通报, 2011, 30 (1), 13.]
-
[15]
(15) Tan, Q. F.; Bao, X. J.; Song, T. C.; Fan, Y.; Shi, G.; Shen, B. J.; Liu, C. H.; Gao, X. H. J. Catal. 2007, 251 (1), 69. doi: 10.1016/j.jcat.2007.07.014
-
[16]
(16) Liu, H. H.; Zhao, H. J.; Gao, X. H.; Ma, J. T. Catal. Today 2007, 125 (3), 163.
-
[17]
(17) Liu, H. H.; Ma, J. T.; Gao, X. H. Catal. Lett. 2006, 110 (3-4), 229. doi: 10.1007/s10562-006-0113-z
-
[18]
(18) Khomane, R. B.; Kulkarni, B. D.; Ahedi, R. K. J. Colloid Interface Sci. 2001, 236, 208. doi: 10.1006/jcis.2000.7406
-
[19]
(19) Iwakai, K.; Ta , T.; Konno, H.; Nakasaka, Y.; Masuda, T. Microporous Mesoporous Mat. 2011, 141, 167. doi: 10.1016/j.micromeso.2010.11.001
-
[1]
-
-
-
[1]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
-
[2]
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
-
[3]
Xuefei Zhao , Xuhong Hu , Zhenhua Jia . 理论与计算化学在傅-克烷基化反应教学中的应用. University Chemistry, 2025, 40(8): 360-367. doi: 10.12461/PKU.DXHX202410008
-
[4]
Zhifang SU , Zongjie GUAN , Yu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290
-
[5]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[6]
Yinyin Qian , Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051
-
[7]
Jihua Deng , Xinshi Wu , Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046
-
[8]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[9]
Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101
-
[10]
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023
-
[11]
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068
-
[12]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016
-
[13]
Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378
-
[14]
Lijun Yue , Siya Liu , Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005
-
[15]
Xinxin YU , Yongxing LIU , Xiaohong YI , Miao CHANG , Fei WANG , Peng WANG , Chongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438
-
[16]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[17]
Mengyang LI , Hao XU , Zhonghao NIU , Chunhua GONG , Weihui ZHONG , Jingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080
-
[18]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[19]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[20]
Wenlong Wang , Wentao Hao , Lang He , Jia Qiao , Ning Li , Chaoqiu Chen , Yong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116
-
[1]
Metrics
- PDF Downloads(99)
- Abstract views(572)
- HTML views(28)