Citation: LIU Jin-Long, LIU Sheng, GUO Jian-Chao, HUA Chen-Yi, CHEN Liang-Xian, WEI Jun-Jun, HEI Li-Fu, WANG Jing-Jing, FENG Zhi-Hong, LIU Qing, LI Cheng-Ming. Formation Mechanism of the H-terminated Diamond Surface[J]. Acta Physico-Chimica Sinica, ;2015, 31(9): 1741-1746. doi: 10.3866/PKU.WHXB201508031 shu

Formation Mechanism of the H-terminated Diamond Surface

  • Received Date: 7 January 2015
    Available Online: 3 August 2015

    Fund Project: 国家自然科学基金(51402013) (51402013) 中国博士后科学基金(2014M550022) (2014M550022) 中央高校基本科研业务费(FRF-TP-14-042A1) (FRF-TP-14-042A1)

  • Microwave hydrogen plasma was used to introduce hydrogen termination on the diamond surface. Optical emission spectroscopy (OES) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) were used to characterize the active radicals in the plasma and the concentration of H-termination on the diamond surface, respectively. Thermal hydrogenation treatment carried out by hot filament heat in a hydrogen atmosphere was also proposed for incorporation of H-termination on the diamond surface. The results showed that the CH radical content in the microwave plasma and the H-termination concentration on the diamond surface after microwave plasma treatment were both facilitated by increasing the substrate temperature, plasma density, and input power. Interestingly, thermal hydrogenation treatment can produce Htermination on the diamond surface compared with to a similar extent to microwave plasma treatment. These observations show that the crucial factor for forming the H-terminated diamond surface is the surface chemical reaction controlled by temperature, rather than the plasma etching effect. When the temperature is above 500 ℃, C=O bonds on the O-terminated diamond surface decompose to CO and leave dangling bonds, which then connect with atomic or molecular hydrogen.

  • 加载中
    1. [1]

      (1) Kubovic, M.; Kasu, M.; Kageshima, H. Appl. Phys. Lett. 2010, 96 (5), 052101. doi: 10.1063/1.3291616

    2. [2]

      (2) Chaniotakis, N.; Sofikiti, N. Anal. Chim. Acta 2008, 615 (1), 1. doi: 10.1016/j.aca.2008.03.046

    3. [3]

      (3) Geng, R.; Zhao, G. H.; Liu, M. C.; Lei, Y. Z. Acta Phys. -Chim. Sin. 2010, 26 (6), 1493. [耿榕, 赵国华, 刘梅川, 雷燕竹. 物理化学学报, 2010, 26 (6), 1493.] doi: 10.3866/PKU.WHXB20100602

    4. [4]

      (4) Lai, C. W.; Sun, Y.; Yang, H.; Zhang, X. Q.; Lin, B. P. Acta Chim. Sin. 2013, 71 (9), 1201. [来常伟, 孙莹, 杨洪, 张雪勤, 林保平. 化学学报, 2013, 71 (9), 1201.]

    5. [5]

      (5) Zhang, M. X.; Li, C. C.; Hua, W. M.; Yue, Y. H.; Gao, Z. Chin. J. Catal. 2014, 35 (11), 1874. [张梦晓, 李璀灿, 华伟明, 乐英红, 高滋. 催化学报, 2014, 35 (11), 1874.]

    6. [6]

      (6) Liu, J. L.; Li, C. M.; Zhu, R. H.; Guo, J. C.; Chen, L. X.; Wei, J. J.; Hei, L. F.; Wang, J. J.; Feng, Z. H.; Guo, H.; Lü, F. X. Appl. Surf. Sci. 2013, 284, 798. doi: 10.1016/j.apsusc.2013.08.011

    7. [7]

      (7) Camarchia, V.; Cappelluti, F.; Ghione, G.; Rossi, M. C.; Calvani, P.; Conte, G.; Pasciuto, B.; Limiti, E.; Dominijanni, D.; Giovine, E. Solid-State Electron. 2011, 55, 19. doi: 10.1016/j.sse. 2010.09.001

    8. [8]

      (8) Kasu, M.; Ueda, K.; Ye, H.; Yamauchi, Y.; Sasaki, S.; Makimoto, T. Diam. Relat. Mater. 2006, 15 (4-8), 783. doi: 10.1016/j.diamond.2005.12.025

    9. [9]

      (9) Snidero, E.; Tromson, D.; Mer, C.; Ber nzo, P.; Foord, J. S.; Nebel, C.; Williams, O. A.; Jackman, R. B. J. Appl. Phys. 2003, 93, 2700. doi: 10.1063/1.1539922

    10. [10]

      (10) Russell, S. A. O.; Sharabi, S.; Tallaire, A.; Moran, D. A. J. IEEE Electron Dev. Lett. 2012, 33 (10), 1471. doi: 10.1109/LED. 2012.2210020

    11. [11]

      (11) Liu, J. L.; Li, C. M.; Guo, J. C.; Zhu, R. H.; Chen, L. X.; Wei, J. J.; Hei, L. F.; Wang, J. J.; Feng, Z. H.; Guo, H.; Lü, F. X. Appl. Surf. Sci. 2013, 287, 304. doi: 10.1016/j.apsusc.2013.09.147

    12. [12]

      (12) Ri, S. G.; Watanabe, H.; Ogura, M.; Takeuchi, D.; Yamasaki, S.; Okushi, H. J. Cryst. Growth 2006, 293 (2), 311. doi: 10.1016/j.jcrysgro.2006.05.036

    13. [13]

      (13) Cui, J. B.; Fang, R. C. Acta Phys. -Chim. Sin. 1996, 12 (2), 102. [崔景彪, 方容川. 物理化学学报, 1996, 12 (2), 102.] doi: 10.3866/PKU.WHXB19960202

    14. [14]

      (14) Weng, S. F. Fourier Transform Infrared Spectroscopy, 2nd ed.; Chemical Industry Press: Beijing, 2010; pp 164-170. [翁诗甫. 傅里叶变换红外光谱分析. 第二版; 北京: 化学工业出版社, 2010: 164-170.]

    15. [15]

      (15) Ando, T.; Inoue, S.; Ishii, M.; Kamo, M.; Sato, Y.; Yamada, O.; Nakano, T. J. Chem. Soc. Faraday Trans. 1993, 89 (4), 749. doi: 10.1039/ft9938900749

    16. [16]

      (16) Jiang, T.; Xu, K. Carbon 1995, 33 (12), 1663. doi: 10.1016/S0039-6028(98)00107-1

    17. [17]

      (17) Su, C.; Lin, J. C. Surf. Sci. 1998, 406 (1-3), 149. doi: 10.1016/S0039-6028(98)00107-1

    18. [18]

      (18) Jiang, X.; Rickers, C. Appl. Phys. Lett. 1999, 75 (25), 3935. doi: 10.1063/1.125499

    19. [19]

      (19) Thomas, R. E.; Rudder, R. A.; Markunas, R. J. J. Vac. Sci. Technol. A 1992, 10 (4), 2451. doi: 10.1116/1.577983


  • 加载中
    1. [1]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    2. [2]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    3. [3]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    4. [4]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    5. [5]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    10. [10]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    11. [11]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    12. [12]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112

    13. [13]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    14. [14]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    15. [15]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    16. [16]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    18. [18]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    19. [19]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    20. [20]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

Metrics
  • PDF Downloads(174)
  • Abstract views(846)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return