Citation:
SHI Xia-Xing, LIAO Shi-Xuan, YUAN Bing, ZHONG Yan-Jun, ZHONG Ben-He, LIU Heng, GUO Xiao-Dong. Facile Synthesis of 0.6Li2MnO3-0.4LiNi0.5Mn0.5O2 with Hierarchical Micro/Nanostructure and High Rate Capability as Cathode Material for Li-Ion Battery[J]. Acta Physico-Chimica Sinica,
;2015, 31(8): 1527-1534.
doi:
10.3866/PKU.WHXB201506151
-
The cuboid layered 0.6Li2MnO3-0.4LiNi0.5Mn0.5O2 cobalt-free lithium-rich solid-solution cathode material was synthesized by a facile quick co-precipitation method. The prepared material was characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma (ICP) spectroscopy, field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical measurements. It was found that the as-prepared material has a typical hexa nal α-NaFeO2 layered structure with R3m space group, and the chemical composition of this material is similar to the corresponding target material. SEM and TEM images reveal that the cuboid structures are assembled from nanoparticles with particle sizes of 40-200 nm. A possible formation mechanism of this cuboid aggregation is proposed. The electrochemical tests (in the voltage range 2.0-4.8 V vs Li/Li+) indicate that the as-prepared material exhibits excellent rate capability. It delivers approximately 243 and 143 mAh·g-1 corresponding to 0.1C and 10C, respectively. Moreover, the asprepared material has od cycling stability even after high rate measurement, delivering a high capacity retention of 90.7% after 72 cycles at 0.5C. This co-precipitation approach, which has facile operation processes and od results, is a economic technique that could facilitate the application of Li-rich cathode on a large scale.
-
-
-
[1]
(1) Cheng, F.; Xin, Y.; Chen, J.; Lu, L.; Zhang, X.; Zhou, H. J. Mater. Chem. A 2013, 1, 5301. doi: 10.1039/c3ta00153a
-
[2]
(2) Tabuchi, M.; Nabeshima, Y.; Takeuchi, T.; Kageyama, H.; Imaizumi, J.; Shibuya, H.; Akimoto, J. J. Power Sources 2013, 221, 427. doi: 10.1016/j.jpowsour.2012.08.055
-
[3]
(3) Xue, Q. R.; Li, J. L.; Xu, G. F.; Hou, P. F.; Yan, G.; Dai, Y.; Wang, X. D.; Gao, F. Acta Phys. -Chim. Sin. 2014, 30, 1667. [薛庆瑞, 李建玲, 徐国峰, 侯朋飞, 晏刚, 代宇, 王新东, 高飞. 物理化学学报, 2014, 30, 1667.] doi: 10.3866/PKU. WHXB201406251
-
[4]
(4) Wei, G. Z.; Lu, X.; Ke, F. S.; Huang, L.; Li, J. T.; Wang, Z. X.; Zhou, Z. Y.; Sun, S. G. Adv. Mater. 2010, 22, 4364. doi: 10.1002/adma.v22:39
-
[5]
(5) Cho, T. H.; Shiosaki, Y.; Noguchi, H. J. Power Sources 2006, 159, 1322. doi: 10.1016/j.jpowsour.2005.11.080
-
[6]
(6) Lei, C. H.; Bareño, J.; Wen, J. G.; Petrov, I.; Kang, S. H.; Abraham, D. P. J. Power Sources 2008, 178, 422. doi: 10.1016/j.jpowsour.2007.11.077
-
[7]
(7) Johnson, C. S.; Li, N.; Lefief, C.; Thackeray, M. M. Electrochem. Commun. 2007, 9, 787. doi: 10.1016/j.elecom.2006.11.006
-
[8]
(8) Kim, S.; Johnson, C. S.; Vaughey, J. T.; Thackeray, M. M.; Hackney, S. A.; Yoon, W.; Grey, C. P. Chem. Mater. 2004, 16, 1996. doi: 10.1021/cm0306461
-
[9]
(9) Lin, J.; Mu, D.; Jin, Y.; Wu, B.; Ma, Y.; Wu, F. J. Power Sources 2013, 230, 76. doi: 10.1016/j.jpowsour.2012.12.042
-
[10]
(10) Shojan, J.; Chitturi, V. R.; Torres, L.; Singh, G.; Katiyar, R. S. Mater. Lett. 2013, 104, 57. doi: 10.1016/j.matlet.2013.04.001
-
[11]
(11) Liu, G. B.; Liu, H.; Shi, Y. F. Electrochim. Acta 2013, 88, 112. doi: 10.1016/j.electacta.2012.10.054
-
[12]
(12) Wu, F.; Lu, H.; Su, Y.; Li, N.; Bao, L.; Chen, S. J. Appl. Electrochem. 2010, 40, 783. doi: 10.1007/s10800-008-0057-2
-
[13]
(13) Zhu, Z.; Zhu, L. J. Power Sources 2014, 256, 178. doi: 10.1016/j.jpowsour.2014.01.068
-
[14]
(14) Xue, Q. R.; Li, J. L.; Xu, G. F.; Zhou, H. W.; Wang, X. D.; Kang, F. Y. J. Mater. Chem. A 2014, 2, 18613. doi: 10.1039/C4TA04024D
-
[15]
(15) Zhang, X.; Cheng, F.; Zhang, K.; Liang, Y.; Yang, S.; Liang, J.; Chen, J. RSC Adv. 2012, 2, 5669. doi: 10.1039/c2ra20669b
-
[16]
(16) Fu, F.; Deng, Y. P.; Shen, C. H.; Xu, G. L.; Peng, X. X.; Wang, Q.; Xu, Y. F.; Fang, J. C.; Huang, L.; Sun, S. G.; Electrochem. Commun. 2014, 44, 54. doi: 10.1016/j.elecom.2014.04.013
-
[17]
(17) Zhang, L.; Borong, W.; Ning, L.; Feng, W. Electrochim. Acta 2014, 118, 67. doi: 10.1016/j.electacta.2013.11.186
-
[18]
(18) Jiang, Y.; Yang, Z.; Luo, W.; Hu, X.; Huang, Y. Phys. Chem. Chem. Phys. 2013, 15, 2954. doi: 10.1039/c2cp44394e
-
[19]
(19) Kim, D.; Gim, J.; Lim, J.; Park, S.; Kim, J. Mater. Res. Bull. 2010, 45, 252. doi: 10.1016/j.materresbull.2009.12.027
-
[20]
(20) Kim, J. H.; Choi, S. H.; Son, M. Y.; Kim, M. H.; Lee, J. K.; Kang, Y. C. Ceram. Int. 2013, 39, 331. doi: 10.1016/j.ceramint. 2012.06.029
-
[21]
(21) Wang, Z. Y.; Li, B.; Ma, J.; Xia, D. G. RSC Adv. 2014, 4, 15825. doi: 10.1039/c3ra47044j
-
[22]
(22) Wu, F.; Wang, Z.; Su, Y.; Guan, Y.; Jin, Y.; Yan, N.; Tian, J.; Bao, L.; Chen, S. J. Power Sources 2014, 267, 337. doi: 10.1016/j.jpowsour.2014.05.097
-
[23]
(23) Ryu, J. H.; Park, B. G.; Kim, S. B.; Park, Y. J. J. Appl. Electrochem. 2009, 39, 1059. doi: 10.1007/s1008-008-9757-2
-
[24]
(24) Kim, G. Y.; Yi, S. B.; Park, Y. J.; Kim, H. G. Mater. Res. Bull. 2008, 43, 3543. doi: 10.1016/j.materresbull.2008.01.011
-
[25]
(25) Yu, C.; Li, G.; Guan, X.; Zheng, J.; Li, L.; Chen, T. Electrochim. Acta 2012, 81, 283. doi: 10.1016/j.electacta.2012.06.084
-
[26]
(26) Li, L.; Zhang, X.; Chen, R.; Zhao, T.; Lu, J.; Wu, F.; Amine, K. J. Power Sources 2014, 249, 28. doi: 10.1016/j.jpowsour. 2013.10.092
-
[27]
(27) Sathiya, M.; Rousse, G.; Ramesha, K.; Laisa, C.; Vezin, H.; Sougrati, M. T.; Doublet, M. L.; Foix, D.; nbeau, D.; Walker, W. Nat. Mater. 2013, 12, 827. doi: 10.1038/nmat3699
-
[28]
(28) Liao, S. X.; Zhong, B. H.; Guo, X.; Shi, X. X.; Hua, W. B. Eur. J. Inorg. Chem. 2013, 2013, 5436. doi: 10.1002/ejic.v2013.31
-
[29]
(29) Zhang, L.; Wu, B.; Li, N.; Mu, D.; Zhang, C.; Wu, F. J. Power Sources 2013, 240, 644. doi: 10.1016/j.jpowsour.2013.05.019
-
[30]
(30) Gu, M.; Belharouak, I.; Zheng, J.; Wu, H.; Xiao, J.; Genc, A.; Amine, K.; Thevuthasan, S.; Baer, D. R.; Zhang, J. G. ACS Nano 2012, 7, 760.
-
[31]
(31) Chen, L.; Chen, S.; Hu, D. Z.; Su, Y. F.; Li, W. K.; Wang, Z.; Bao, L. Y.; Wu, F. Acta Phys. -Chim. Sin. 2014, 30, 467. [陈来, 陈实, 胡道中, 苏岳峰, 李维康, 王昭, 包丽颖, 吴峰. 物理化学学报, 2014, 30, 467.] doi: 10.3866/PKU.WHXB 201312252
-
[32]
(32) Li, Q.; Li, G.; Fu, C.; Luo, D.; Fan, J.; Li, L. ACS Appl. Mater. Interfaces 2014, 6, 10330. doi: 10.1021/am5017649
-
[33]
(33) Wang, Y.; Yan, X.; Bie, X.; Fu, Q.; Du, F.; Chen, G.; Wang, C.; Wei, Y. Electrochim. Acta 2014, 116, 250. doi: 10.1016/j.electacta.2013.10.215
-
[1]
-
-
-
[1]
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
-
[2]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030
-
[3]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[4]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014
-
[5]
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002
-
[6]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[7]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[8]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[9]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[10]
Lingbang Qiu , Jiangmin Jiang , Libo Wang , Lang Bai , Fei Zhou , Gaoyu Zhou , Quanchao Zhuang , Yanhua Cui . In Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040
-
[11]
Pengyang FAN , Shan FAN , Qinjin DAI , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Xiaoxiao HUANG , Yong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339
-
[12]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023
-
[13]
Liangliang Song , Haoyan Liang , Shunqing Li , Bao Qiu , Zhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085
-
[14]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
-
[15]
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
-
[16]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028
-
[17]
Ying Li , Yushen Zhao , Kai Chen , Xu Liu , Tingfeng Yi , Li-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007
-
[18]
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042
-
[19]
Xuechen Hu , Qiuying Xia , Fan Yue , Xinyi He , Zhenghao Mei , Jinshi Wang , Hui Xia , Xiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046
-
[20]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[1]
Metrics
- PDF Downloads(339)
- Abstract views(859)
- HTML views(20)