Citation:
REN Zhong-Hua, LU Yue-Xiang, YUAN Hang, WANG Zhe, YU Bo, CHEN Jing. Charge-Transfer Reactions at the Interface between Atmospheric- Pressure Microplasma Anode and Ionic Solution[J]. Acta Physico-Chimica Sinica,
;2015, 31(7): 1215-1218.
doi:
10.3866/PKU.WHXB201506102
-
Atmospheric- pressure microplasma is an attractive gaseous electrode, and may replace the commonly used rare metal electrodes for electrochemical reactions. The reactions at the plasma anode-liquid interface have not been well investigated, and application of plasma anodes to electrodeposition is still rare. In this communication, by choosing the oxidation of ferrocyanide to ferricyanide as a model reaction, we carefully investigated the charge-transfer reaction at the interface between a plasma anode and an ionic solution. The results showed that ferrocyanide was progressively oxidated to ferricyanide over time, and the rate of oxidation was proportional to the discharge current. We also found that after the discharge the oxidation percent of ferrocyanide still increased approximately linearly with storage time, and the increasing rate was dependent on the discharge time. The rate of oxidation after discharge was much lower than that caused by discharge. These results demonstrate that atmospheric-pressure microplasma could act as a gaseous anode for transferring positive charges at the plasma-liquid interface and inducing electrochemical reactions in solution. During discharge, oxidative active species were also produced. We also successfully electrodeposited copper on stainless steel with the assistance of a microplasma anode in CuSO4 saturated solution, and the current efficiency was about 90%.
-
Keywords:
-
Microplasma
, - Anode,
- Charge transfer,
- Interface,
- Electrodeposition
-
-
-
-
[1]
(1) Attri, P.; Arora, B.; Choi, E. H. RSC Adv. 2013, 3, 12540. doi: 10.1039/c3ra41277f
-
[2]
(2) Akolkar, R.; Sankaran, R. M. J. Vac. Sci. Technol. A 2013, 31, 050811. doi: 10.1116/1.4810786
-
[3]
(3) Tao, J. L.; Xiong, Y. Q. Acta Phys. -Chim. Sin. 2013, 29, 205. [陶晶亮, 熊源泉. 物理化学学报, 2013, 29, 205.] doi: 10.3866/PKU.WHXB201210264
-
[4]
(4) Zhao, Y.; Wang, L.; Zhang, J. L.; Guo, H. C. Acta Phys. -Chim. Sin. 2014, 30, 738. [赵越, 王丽, 张家良, 郭洪臣. 物理化学学报, 2014, 30, 738.] doi: 10.3866/PKU.WHXB201402141
-
[5]
(5) Baba, K.; Kaneko, T.; Hatakeyama, R.; Motomiya, K.; Tohji, K. Chem. Commun. 2010, 46, 255. doi: 10.1039/B918505D
-
[6]
(6) Chen, Q.; Kaneko, T.; Hatakeyama, R. Chem. Phys. Lett. 2012, 521, 113. doi: 10.1016/j.cplett.2011.11.065
-
[7]
(7) Yan, T. T.; Zhong, X. X.; Rider, A. E.; Lu, Y.; Furman, S. A.; Ostrikov, K. Chem. Commun. 2014, 50, 3144. doi: 10.1039/c3cc48846b
-
[8]
(8) Huang, X. Z.; Zhong, X. X.; Lu, Y.; Li, Y. S.; Rider, A. E.; Furman, S. A.; Ostrikov, K. Nanotechnology 2013, 24, 095604. doi: 10.1088/0957-4484/24/9/095604
-
[9]
(9) Patel, J.; Nemcova, L.; Maguire, P.; Graham, W. G.; Mariotti, D. Nanotechnology 2013, 24, 245604. doi: 10.1088/0957-4484/24/24/245604
-
[10]
(10) Pootawang, P.; Saito, N.; Lee, Y. S. Nanotechnology 2013, 24, 055604. doi: 10.1088/0957-4484/24/5/055604
-
[11]
(11) Liu, C. J.; Zhao, Y.; Li, Y. Z.; Zhang, D. S.; Chang, Z.; Bu, X. H. ACS Sustain. Chem. Eng. 2014, 2, 3. doi: 10.1021/sc400376m
-
[12]
(12) Li, Z. H.; Zhang, Z. K.; Guo, D. Z. Acta Phys. -Chim. Sin. 2010, 26, 3106. [李兆虎, 张志昆, 郭等柱. 物理化学学报, 2010, 26, 3106.] doi: 10.3866/PKU.WHXB20101114
-
[13]
(13) Shirai, N.; Uchida, S.; Tochikubo, F. Jpn. J. App. Phys. 2014, 53, 046202. doi: 10.7567/JJAP.53.046202
-
[14]
(14) Li, Z. A.; Tan, Q.; Hou, X. D.; Xu, K. L.; Zheng, C. B. Anal. Chem. 2014, 86, 12093. doi: 10.1021/ac502911p
-
[15]
(15) Webb, M. R.; Andrade, F. J.; Hieftje, G. M. Anal. Chem. 2007, 79, 7807. doi: 10.1021/ac0707885
-
[16]
(16) Webb, M. R.; Andrade, F. J.; Hieftje, G. M. Anal. Chem. 2007, 79, 7899. doi: 10.1021/ac070789x
-
[17]
(17) Wang, X.; Zhou, M.; Jin, X. Electrochim. Acta 2012, 83, 501. doi: 10.1016/j.electacta.2012.06.131
-
[18]
(18) Jiang, B.; Zheng, J.; Qiu, S.; Wu, M.; Zhang, Q.; Yan, Z.; Xue, Q. Chemical Engineering Journal 2014, 236, 348. doi: 10.1016/j.cej.2013.09.090
-
[19]
(19) Richmonds, C.; Sankaran, R. M. Appl. Phys. Lett. 2008, 93, 131501. doi: 10.1063/1.2988283
-
[20]
(20) Richmonds, C.; Witzke, M.; Bartling, B.; Lee, S.W.; Wainright, J.; Liu, C. C.; Sankaran, R. M. J. Am. Chem. Soc. 2011, 133, 17582. doi: 10.1021/ja207547b
-
[21]
(21) Rumbach, P.; Witzke, M.; Sankaran, R. M.; , D. B. J. Am. Chem. Soc. 2013, 135, 16264. doi: 10.1021/ja407149y
-
[22]
(22) Denaro, A. R.; Hickling, A. J. Electrochem. Soc. 1958, 105, 265. doi: 10.1149/1.2428821
-
[23]
(23) Yan, Z. C.; Chen, L.; Wang, H. L. Acta Phys. -Chim. Sin. 2007, 23, 835. [严宗诚, 陈砺, 王红林. 物理化学学报, 2007, 23, 835.] doi: 10.3866/PKU.WHXB20070608
-
[24]
(24) Sengupta, S. K.; Singh, O. P. J. Electroanal. Chem. 1994, 369, 113. doi: 10.1016/0022-0728(94)87089-6
-
[25]
(25) Shirai, N.; Uchida, S.; Tochikubo, F. Jpn. J. Appl. Phys. 2014, 53, 046202. doi: 10.7567/JJAP.53.046202
-
[1]
-
-
-
[1]
Xuechen Hu , Qiuying Xia , Fan Yue , Xinyi He , Zhenghao Mei , Jinshi Wang , Hui Xia , Xiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046
-
[2]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031
-
[3]
Tao Xu , Wei Sun , Tianci Kong , Jie Zhou , Yitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021
-
[4]
Huirong BAO , Jun YANG , Xiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008
-
[5]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[6]
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
-
[7]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[8]
Yushan Cai , Fang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048
-
[9]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030
-
[10]
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065
-
[11]
Weikang Wang , Yadong Wu , Jianjun Zhang , Kai Meng , Jinhe Li , Lele Wang , Qinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093
-
[12]
Weilai Yu , Chuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022
-
[13]
Xueting Cao , Shuangshuang Cha , Ming Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041
-
[14]
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084
-
[15]
Xuexia He , Zhibin Lei , Pei Chen , Qi Li , Weiyu Deng , Peng Hu . 以“溶度积规则”指导电荷转移共晶沉淀析出——材料类专业无机化学教学改革案例. University Chemistry, 2025, 40(8): 1-10. doi: 10.12461/PKU.DXHX202410099
-
[16]
Chaolin Mi , Yuying Qin , Xinli Huang , Yijie Luo , Zhiwei Zhang , Chengxiang Wang , Yuanchang Shi , Longwei Yin , Rutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011
-
[17]
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366
-
[18]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013
-
[19]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027
-
[20]
Zhi Dou , Huiyu Duan , Yixi Lin , Yinghui Xia , Mingbo Zheng , Zhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039
-
[1]
Metrics
- PDF Downloads(378)
- Abstract views(734)
- HTML views(26)