Citation: ZHAO Jia, LIU Li-Feng, ZHANG Ying. Synthesis of Silver Nanoparticles Loaded onto a Structural Support and Their Catalytic Activity[J]. Acta Physico-Chimica Sinica, ;2015, 31(8): 1549-1558. doi: 10.3866/PKU.WHXB201506021 shu

Synthesis of Silver Nanoparticles Loaded onto a Structural Support and Their Catalytic Activity

  • Received Date: 16 February 2015
    Available Online: 2 June 2015

    Fund Project: 国家自然科学基金(21173141) (21173141)陕西省工业攻关项目(2011K08-14) (2011K08-14)教育部长江学者和创新团队发展计划滚动支持项目(IRT-14R33)资助 (IRT-14R33)

  • The core-shell type poly(styrene-N-isopropylacrylamide)/poly(N-isopropylacrylamide-co-3-methacryloxypropyltrimethoxysilane) (P(St-NIPAM)/P(NIPAM-co-MPTMS)) composite microgels with thermosensitivity were synthesized by two-step polymerization methods. Using P(St-NIPAM)/P(NIPAM-co-MPTMS) composite microgels modified by (3-mercaptopropyl) trimethoxysilane (MPS) as support material, Ag nanoparticles (AgNPs) were in-situ controllably synthesized using ethanol as a reducing regent. The structure, composition and properties of the prepared P(St-NIPAM)/P(NIPAM-co-MPTMS)-(SH)Ag composite materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fouriertransform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and UV-visible spectroscopy (UV-Vis). Additionally, the catalytic activity of the composite microgels was investigated using the reduction of 4-nitrophenol (4-NP) by NaBH4 as a model reaction. The results showed that the dispersity of the in situ formed AgNPs was greatly improved because of the confining effect of the organic-inorganic microgel network with mercapto groups. Although the thermosensitivity of the composite microgels decreased because of the PNIPAM segments separated by the inorganic networks formed by MPTMS, the composite microgels still showed excellent catalytic performance and thermosensitivity in modulating the catalytic activity of AgNPs. These findings are related to the following aspects. The separated PNIPAM segments are favorable for mass transfer, and the networks with mercapto groups allow control of the size and local distribution of the in situ formed AgNPs. The present results are significant for construction of functional nanoscale metal catalytic materials.

  • 加载中
    1. [1]

      (1) Campelo, J. M.; Luna, D.; Luque, R.; Marinas, J. M.; Romero, A. A. Chem. Sus. Chem. 2009, 2 (1), 18. doi: 10.1002/cssc.v2:1

    2. [2]

      (2) Kowalczuk, A.; Trzcinska, R.; Trzebicka, B.; Müller, A. H. E.; Dworak, A.; Tsvetanov, C. B. Prog. Polym. Sci. 2014, 39 (1), 43. doi: 10.1016/j.progpolymsci.2013.10.004

    3. [3]

      (3) Wang, J.; Lu, A. H.; Li, M. R.; Zhang, W. P.; Chen, Y. S.; Tian, D. X.; Li, W. C. ACS Nano 2013, 7 (6), 4902. doi: 10.1021/nn401446p

    4. [4]

      (4) Qu, K. G.; Wu, L.; Ren, J. S.; Qu, X. G. ACS Appl. Mater. Interfaces 2012, 4 (9), 5001. doi: 10.1021/am301376m

    5. [5]

      (5) Zhang, X.; Su, Z. H. Adv. Mater. 2012, 24 (33), 4574. doi: 10.1002/adma.v24.33

    6. [6]

      (6) Geng, Q. R.; Du, J. Z. RSC Adv. 2014, 4 (32), 16425. doi: 10.1039/c4ra01866d

    7. [7]

      (7) Sahiner, N. Prog. Polym. Sci. 2013, 38 (9), 1329. doi: 10.1016/j.progpolymsci.2013.06.004

    8. [8]

      (8) Wang, S. P.; Zhang, J. N.; Yuan, P. F.; Sun, Q.; Jia, Y.; Yan, W. F.; Chen, Z. M.; Xu, Q. J. Mater. Sci. 2015, 50 (3), 1323. doi: 10.1007/s10853-014-8692-3

    9. [9]

      (9) Yao, T. J.; Wang, C. X.; Wu, J.; Lin, Q.; Lv, H.; Zhang, K.; Yu, K.; Yang, B. J. Colloid Interface Sci. 2009, 338 (2), 573. doi: 10.1016/j.jcis.2009.05.001

    10. [10]

      (10) Das, S. K.; Khan, M. M. R.; Guha, A. K.; Naskar, N. Green Chem. 2013, 15 (9), 2548. doi: 10.1039/c3gc40310f

    11. [11]

      (11) Qian, K.; Fang, J.; Huang, W. X.; He, B.; Jiang, Z. Q.; Ma, Y. S.; Wei, S. Q. J. Mol. Catal. A: Chem. 2010, 320 (1-2), 97. doi: 10.1016/j.molcata.2010.01.010

    12. [12]

      (12) Wu, B. H.; Kuang, Y. J.; Zhang, X. H.; Chen, J. H. Nano Today 2011, 6 (1), 75. doi: 10.1016/j.nantod.2010.12.008

    13. [13]

      (13) Dong S. A.; Liu, F.; Hou, S. Q.; Pan, Z. F. Acta Chim. Sin. 2010, 68 (15), 1519. [董守安, 刘锋, 侯树谦, 潘再富. 化学学报, 2010, 68 (15), 1519.]

    14. [14]

      (14) Siamaki, A. R.; Khder, A. E. R. S.; Abdelsayed, V.; El-Shall, M. S.; Gupton, B. F. J. Catal. 2011, 279 (1), 1. doi: 10.1016/j.jcat.2010.12. 003

    15. [15]

      (15) Guo, Y. Q.; Sun, X. Y.; Liu, Y.; Wang, W.; Qiu, H. X.; Gao, J. P. Carbon 2012, 50 (7), 2513. doi: 10.1016/j.carbon.2012.01.074

    16. [16]

      (16) Hood, M. A.; Mari, M.; Muñoz-Espí, R. Materials 2014, 7 (5), 4057. doi: 10.3390/ma7054057

    17. [17]

      (17) Ma, Z.; Dai, S. Nano Res. 2011, 4 (1), 3. doi: 10.1007/s12274-010-0025-5

    18. [18]

      (18) Haruta, M.; Daté, M. Appl. Catal. A: Gen. 2001, 222 (1-2), 427. doi: 10.1016/S0926-860X(01)00847-X

    19. [19]

      (19) Zheng, X. X.; Liu, Q.; Jing, C.; Li, Y.; Li, D.; Luo, W. J.; Wen, Y. Q.; He, Y.; Huang, Q.; Long, Y. T.; Fan, C. H. Angew. Chem. Int. Edit. 2011, 50 (50), 11994. doi: 10.1002/anie.v50.50

    20. [20]

      (20) Lu, Y.; Mei, Y.; Ballauff, M. J. Phys. Chem. B 2006, 110 (9), 3930. doi: 10.1021/jp057149n

    21. [21]

      (21) Lu, Y.; Ballauff, M. Prog. Polym. Sci. 2011, 36 (6), 767. doi: 10.1016/j.progpolymsci.2010.12.003

    22. [22]

      (22) Döring, A.; Birnbaum, W.; Kuckling, D. Chem. Soc. Rev. 2013, 42 (17), 7391. doi: 10.1039/c3cs60031a

    23. [23]

      (23) Zhang, J. L.; Zhang, M. X.; Tang, K. J.; Verpoort, F.; Sun, T. L. Small 2014, 10 (1), 32. doi: 10.1002/smll.201300287

    24. [24]

      (24) Zhang, J. T.; Wei, G.; Keller, T. F.; Gallagher, H.; Stötzel, C.; Müller, F. A.; ttschaldt, M.; Schubert, U. S.; Jandt, K. D. Macromol. Mater. Eng. 2010, 295 (11), 1049. doi: 10.1002/mame.v295.11

    25. [25]

      (25) Liu, Y. Y.; Liu, X. Y.; Yang, J. M.; Lin, D. L.; Chen, X.; Zha, L. S. Colloids Surf. A: Physicochem. Eng. Aspects 2012, 393 (5), 105.

    26. [26]

      (26) Shi, S.; Zhang, L.; Wang, T.; Wang, Q. M.; Gao, Y.; Wang, N. Soft Matter 2013, 9 (46), 10966. doi: 10.1039/c3sm52303a

    27. [27]

      (27) Qi, J. J.; Lv, W. P.; Zhang, G. H.; Li, Y.; Zhang, G. L.; Zhang, F. B.; Fan, X. B. Nanoscale 2013, 5 (14), 6275. doi: 10.1039/c3nr00395g

    28. [28]

      (28) Zhang, C. X.; Li, C.; Chen, Y. Y.; Zhang, Y. J. Mater. Sci. 2014, 49 (20), 6872. doi: 10.1007/s10853-014-8389-7

    29. [29]

      (29) Lu, Y.; Proch, S.; Schrinner, M.; Drechsler, M.; Kempe, R.; Ballauff, M. J. Mater. Chem. 2009, 19 (23), 3955. doi: 10.1039/b822673n

    30. [30]

      (30) Welsch, N.; Ballauff, M.; Lu, Y. Adv. Polym. Sci. 2011, 234, 129.

    31. [31]

      (31) Wu, S.; Dzubiella, J.; Kaiser, J.; Drechsler, M.; Guo, X. H.; Ballauff, M.; Lu, Y. Angew. Chem. Int. Edit. 2012, 51 (9), 2229. doi: 10.1002/anie.201106515

    32. [32]

      (32) Hervés, P.; Pérez-Lorenzo, M.; Liz-Marzán, L. M.; Dzubiella, J.; Lu, Y.; Ballauff, M. Chem. Soc. Rev. 2012, 41 (17), 5577. doi: 10.1039/c2cs35029g

    33. [33]

      (33) Zhang, J. T.; Liu, X. L.; Fahr, A.; Jandt, K. D. Colloid Polym. Sci. 2008, 286 (10), 1209. doi: 10.1007/s00396-008-1890-2

    34. [34]

      (34) Cao, Z.; Du, B. Y.; Chen, T. Y.; Nie, J. J.; Xu, J. T.; Fan, Z. Q. Langmuir 2008, 24 (22), 12771.

    35. [35]

      (35) Zhang, J. T.; Pan, C. J.; Keller, T.; Bhat, R.; ttschaldt, M.; Schubert, U. S.; Jandt, K. D. Macromol. Mater. Eng. 2009, 294 (6-7), 396. doi: 10.1002/mame.v294:6/7

    36. [36]

      (36) Mei, Y.; Lu, Y.; Polzer, F.; Ballauff, M. Chem. Mater. 2007, 19 (5), 1062. doi: 10.1021/cm062554s

    37. [37]

      (37) Zhang, X.; Yang, H. Y.; Zhao, X. J.; Wang, Y.; Zheng, N. F. Chin. Chem. Lett. 2014, 25 (6), 839. doi: 10.1016/j.cclet.2014.05.027

    38. [38]

      (38) Xu, H. X.; Suslick, K. S. Adv. Mater. 2010, 22 (10), 1078. doi: 10.1002/adma.200904199

    39. [39]

      (39) Leelavathi, A.; Rao, T. U. B.; Pradeep, T. Nanoscale Res. Lett. 2011, 6 (1), 123. doi: 10.1186/1556-276X-6-123

    40. [40]

      (40) Lv, M. L.; Li, G. L.; Li, C.; Chen, H. Q.; Zhang, Y. Acta Chim. Sin. 2011, 69 (20), 2385. [吕美丽, 李国梁, 李超, 陈慧强, 张颖. 化学学报, 2011, 69 (20), 2385.]

    41. [41]

      (41) Wang, M. Y.; Niu, R.; Huang, M.; Zhang, Y. Sci. Sin. Chim. 2015, 45 (1), 76. [王明月, 牛瑞, 黄敏, 张颖. 中国科学. 化学, 2015, 45 (1), 76.]

    42. [42]

      (42) Hao, M. M.; Li, C.; Yu, M.; Zhang, Y. Acta Phys. -Chim. Sin. 2013, 29 (4), 785. [郝敏敏, 李晨, 余敏, 张颖. 物理化学学报, 2013, 29 (4), 785.] doi: 10.3866/PKU.WHXB201302042

    43. [43]

      (43) Zhang, F.; Wang, C. C. Colloid Polym. Sci. 2008, 286 (8-9), 889. doi: 10.1007/s00396-008-1842-x

    44. [44]

      (44) Pan, K. Y.; Liang, Y. F.; Pu, Y. C.; Hsu, Y. J.; Yeh, J. W.; Shih, H. C. Appl. Surf. Sci. 2014, 311 (30), 399.

    45. [45]

      (45) Wang, Y. P.; Yuan, T. K.; Li, Q. L.; Wang, L. P.; Gu, S. J.; Pei, X. W. Mater. Lett. 2005, 59 (14-15), 1736. doi: 10.1016/j.matlet.2005.01.048

    46. [46]

      (46) Petoral, R. M.; Yazdi, J. G. R.; Spetz, A. L.; Yakimova, R.; Uvdal, K. Appl. Phys. Lett. 2007, 90 (22), 223904. doi: 10.1063/1.2745641

    47. [47]

      (47) Oubaha, M.; Varma1, P. C. R.; Duffy, B.; Gasem, Z. M.; Hinder, S. J. Adv. Mater. Phys. Chem. 2014, 4 (5), 75. doi: 10.4236/ampc.2014.45010

    48. [48]

      (48) Teng, W.; Li, X. Y.; Zhao, Q. D.; Chen, G. H. J. Mater. Chem. A 2013, 1 (32), 9060. doi: 10.1039/c3ta11254c

    49. [49]

      (49) Yin, P. G.; Chen, Y.; Jiang, L.; You, T. T.; Lu, X. Y.; Guo, L.; Yang, S. H. Macromol. Rapid Commun. 2011, 32 (13), 1000. doi: 10.1002/marc.v32.13

    50. [50]

      (50) Chen, J.; Xiao, P.; Gu, J. C.; Han, D.; Zhang, J. W.; Sun, A. H.; Wang, W. Q.; Chen, T. Chemr Commun. 2014, 50 (10), 1212. doi: 10.1039/C3CC47386D

    51. [51]

      (51) Lu, Y.; Mei, Y.; Drechsler, M.; Ballauff, M. Angew. Chemr. Int. Edit. 2006, 45 (5), 813. doi: 10.1002/anie.200502731


  • 加载中
    1. [1]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    6. [6]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    7. [7]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    8. [8]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    11. [11]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    12. [12]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    13. [13]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    14. [14]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    15. [15]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    16. [16]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    17. [17]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    18. [18]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    19. [19]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(385)
  • Abstract views(473)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return