Citation: ZHAO Meng-Yao, YANG Xue-Ping, YANG Xiao-Ning. Molecular Dynamics Simulation of Water Molecules in Confined Slit Pores of Graphene[J]. Acta Physico-Chimica Sinica, ;2015, 31(8): 1489-1498. doi: 10.3866/PKU.WHXB201506011 shu

Molecular Dynamics Simulation of Water Molecules in Confined Slit Pores of Graphene

  • Received Date: 26 November 2014
    Available Online: 1 June 2015

    Fund Project: 国家自然科学基金(21376116)资助项目 (21376116)

  • Graphene has potential applications in many fields. In particular, two-dimensional graphene nanochannels assembled from graphene sheets can be used for filtration and separation. In this work, molecular dynamics simulations were performed to investigate the microscopic structural and dynamical properties of water molecules confined in pristine and hydroxyl-modified graphene slit pores with widths of 0.6-1.5 nm. The simulation results indicate that water molecules have layered structure distributions within the graphene nanoscale channels. The special ordered ring structure can be formed for water confined in the subnanometer pores (0.6-0.8 nm). Graphene surfaces are able to induce distinctive molecular interfacial orientations of water molecules. In the graphene slits, the diffusion of water molecules was slower than that in bulk water, and the hydroxyl-modified graphene pores could lead to more reduced water diffusion ability. For the hydroxyl-modified graphene pores, water molecules spontaneously permeated into the 0.6 nm slit pore. According to the simulation results, the dynamic behavior of confined water is associated with the ordered water structures confined within the graphene-based nanochannels. These simulation results will be helpful in understanding the penetration mechanism of water molecules through graphene nanochannels, and will provide a guide for designing graphene-based membrane structures.

  • 加载中
    1. [1]

      (1) Pan, Y. S.; Birkedal, H.; Pattison, P.; Brown, D.; Chapuis, G. J. Phys. Chem. B 2004, 108 (20), 6458. doi: 10.1021/jp037219v

    2. [2]

      (2) Newsome, D. A.; Sholl, D. S. J. Phys. Chem. B 2005, 109 (15), 7239. doi: 10.1021/jp044247k

    3. [3]

      (3) Milischuk, A. A.; Ladanyi, B. M. J. Chem. Phys. 2011, 135 (17), 174709. doi: 10.1063/1.3657408

    4. [4]

      (4) Qiao, Y.; Xu, X.; Li, H. Appl. Phys. Lett. 2013, 103 (23), 233106. doi: 10.1063/1.4839255

    5. [5]

      (5) Han, S.; Choi, M. Y.; Kumar, P.; Stanley, H. E. Nat. Phys. 2010, 6 (9), 685. doi: 10.1038/nphys1708

    6. [6]

      (6) Du, F.; Qu, L. T.; Xia, Z. H.; Feng, L. F.; Dai, L. M. Langmuir 2011, 27 (13), 8437. doi: 10.1021/la200995r

    7. [7]

      (7) Strauss, I.; Chan, H.; Král, P. J. Am. Chem. Soc. 2014, 136 (4), 1170. doi: 10.1021/ja4087962

    8. [8]

      (8) Cicero, G.; Grossman, J. C.; Schwegler, E.; Gygi, F.; Galli, G. J. Am. Chem. Soc. 2008, 130 (6), 1871. doi: 10.1021/ja074418+

    9. [9]

      (9) Thomas, J. A.; McGaughey, A. J. H. Nano Lett. 2008, 8 (9), 2788. doi: 10.1021/nl8013617

    10. [10]

      (10) Mashl, R. J.; Joseph, S.; Aluru, N. R.; Jakobsson, E. Nano Lett. 2003, 3 (5), 589. doi: 10.1021/nl0340226

    11. [11]

      (11) Liu, Y. C.; Wang, Q.; Lü, L. H.; Zhang, L. Z. Acta Phys. -Chim. Sin. 2005, 21 (1), 63. [刘迎春, 王琦, 吕玲红, 章连众. 物理化学学报, 2005, 21 (1), 63.] doi: 10.3866/PKU.WHXB 20050113

    12. [12]

      (12) Iiyama, T.; Nishikawa, K.; Otowa, T.; Kaneko, K. J. Phys. Chem. 1995, 99 (25), 10075. doi: 10.1021/j100025a004

    13. [13]

      (13) Koga, K.; Gao, G. T.; Tanaka, H.; Zeng, X. C. Nature 2001, 412 (6849), 802. doi: 10.1038/35090532

    14. [14]

      (14) Stoller, M. D.; Park, S.; Zhu, Y. W.; An, J. H.; Ruoff, R. S. Nano Lett. 2008, 8 (10), 3498. doi: 10.1021/nl802558y

    15. [15]

      (15) Chandra, V.; Park, J.; Chun, Y.; Lee, J. W.; Hwang, I. C.; Kim, K. S. ACS Nano 2010, 4 (7), 3979. doi: 10.1021/nn1008897

    16. [16]

      (16) Zhang, H.; Lv, X. J.; Li, Y. M.; Wang, Y.; Li, J. H. ACS Nano 2010, 4 (1), 380. doi: 10.1021/nn901221k

    17. [17]

      (17) Cohen-Tanugi, D.; Grossman, J. C. Nano Lett. 2012, 12 (7), 3602. doi: 10.1021/nl3012853

    18. [18]

      (18) Hu, Y. J.; Jin, J.; Zhang, H.; Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26 (8), 2073. [胡耀娟, 金娟, 张卉, 吴萍, 蔡称心. 物理化学学报, 2010, 26 (8), 2073.] doi: 10.3866/PKU. WHXB20100812

    19. [19]

      (19) Chen, H. Q.; Müeller, M. B.; Gilmore, K. J.; Wallace, G. G.; Li, D. Adv. Mater. 2008, 20 (18), 3557. doi: 10.1002/adma. 200800757

    20. [20]

      (20) Li, D.; Mueller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Nat. Nanotechnol. 2008, 3 (2), 101. doi: 10.1038/nnano. 2007.451

    21. [21]

      (21) Han, Y.; Xu, Z.; Gao, C. Adv. Funct. Mater. 2013, 23 (29), 3693. doi: 10.1002/adfm.v23.29

    22. [22]

      (22) Mi, B. X. Science 2014, 343 (6172), 740. doi: 10.1126/science.1250247

    23. [23]

      (23) Joshi, R. K.; Carbone, P.; Wang, F. C.; Kravets, V. G.; Su, Y.; Gri rieva, I. V.; Wu, H. A.; Geim, A. K.; Nair, R. R. Science 2014, 343 (6172), 752. doi: 10.1126/science.1245711

    24. [24]

      (24) Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Gri rieva, I. V.; Geim, A. K. Science 2012, 335 (6067), 442. doi: 10.1126/science.1211694

    25. [25]

      (25) Sun, P. Z.; Zhu, M.; Wang, K. L.; Zhong, M. L.; Wei, J. Q.; Wu, D. H.; Xu, Z. P.; Zhu, H. W. ACS Nano 2013, 7 (1), 428. doi: 10.1021/nn304471w

    26. [26]

      (26) Sun, P. Z.; Zheng, F.; Zhu, M.; Song, Z. G.; Wang, K. L.; Zhong, M. L.; Wu, D. H.; Little, R. B.; Xu, Z. P.; Zhu, H. W. ACS Nano 2014, 8 (1), 850. doi: 10.1021/nn4055682

    27. [27]

      (27) Hu, M.; Mi, B. X. Environ. Sci. Technol. 2013, 47 (8), 3715. doi: 10.1021/es400571g

    28. [28]

      (28) Xu, L.; Hu, Y. Z.; Ma, T. B.; Wang, H. Nanotechnology 2013, 24 (50), 505504. doi: 10.1088/0957-4484/24/50/505504

    29. [29]

      (29) Kolesnikov, A. I.; Zanotti, J. M.; Loong, C. K.; Thiyagarajan, P.; Moravsky, A. P.; Loutfy, R. O.; Burnham, C. J. Phys. Rev. Lett. 2004, 93 (3), 035503. doi: 10.1103/PhysRevLett. 93.035503

    30. [30]

      (30) Fernández-Serra, M. V.; Artacho, E. Phys. Rev. Lett. 2006, 96 (1), 016404. doi: 10.1103/PhysRevLett.96.016404

    31. [31]

      (31) Gao, W. X.; Wang, H. L.; Li, S. M. Acta Phys. -Chim. Sin. 2014, 30 (9), 1625. [高文秀, 王洪磊, 李慎敏. 物理化学学报, 2014, 30 (9), 1625.] doi: 10.3866/PKU.WHXB201407031

    32. [32]

      (32) Xiong, W.; Liu, J. Z.; Ma, M.; Xu, Z. P.; Sheridan, J.; Zheng, Q. S. Phys. Rev. E 2011, 84 (5), 056329. doi: 10.1103/PhysRevE.84.056329

    33. [33]

      (33) Falk, K.; Sedlmeier, F.; Joly, L.; Netz, R. R.; Bocquet, L. Nano Lett. 2010, 10 (10), 4067. doi: 10.1021/nl1021046

    34. [34]

      (34) Mosaddeghi, H.; Alavi, S.; Kowsari, M. H.; Najafi, B. J. Chem. Phys. 2012, 137 (18), 184703. doi: 10.1063/1.4763984

    35. [35]

      (35) Kumar, P.; Buldyrev, S. V.; Starr, F. W.; Giovambattista, N.; Stanley, H. E. Phys. Rev. E 2005, 72 (5), 051503. doi: 10.1103/PhysRevE.72.051503

    36. [36]

      (36) Hirunsit, P.; Balbuena, P. B. J. Phys. Chem. C 2007, 111 (4), 1709. doi: 10.1021/jp063718v

    37. [37]

      (37) Warner, J. H.; Mukai, M.; Kirkland, A. I. ACS Nano 2012, 6 (6), 5680. doi: 10.1021/nn3017926

    38. [38]

      (38) Argyris, D.; Tummala, N. R.; Striolo, A.; Cole, D. R. J. Phys. Chem. C 2008, 112 (35), 13587. doi: 10.1021/jp803234a

    39. [39]

      (39) Liu, L.; Zhang, L.; Sun, Z. G.; Xi, G. Nanoscale 2012, 4 (20), 6279. doi: 10.1039/c2nr31847d

    40. [40]

      (40) Mark, P.; Nilsson, L. J. Phys. Chem. A 2001, 105 (43), 9954. doi: 10.1021/jp003020w

    41. [41]

      (41) Cheng, A.; Steele, W. A. J. Chem. Phys. 1990, 92 (6), 3858. doi: 10.1063/1.458562

    42. [42]

      (42) Wei, N.; Lv, C. J.; Xu, Z. P. Langmuir 2014, 30 (12), 3572. doi: 10.1021/la500513x

    43. [43]

      (43) Jane?ek, J.; Netz, R. R. Langmuir 2007, 23 (16), 8417. doi: 10.1021/la700561q

    44. [44]

      (44) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; uld, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. J. Am. Chem. Soc. 1995, 117 (19), 5179. doi: 10.1021/ja00124a002

    45. [45]

      (45) tzias, A.; Tylianakis, E.; Froudakis, G.; Steriotis, T. Microporous Mesoporous Mat. 2012, 154, 38. doi: 10.1016/j.micromeso.2011.10.011

    46. [46]

      (46) Zhu, Y. D.; Guo, X. J.; Shao, Q.; Wei, M. J.; Wu, X. M.; Lu, L. H.; Lu, X. H. Fluid Phase Equilibr. 2010, 297 (2), 215. doi: 10.1016/j.fluid.2010.05.005

    47. [47]

      (47) Eun, C. S.; Berkowitz, M. L. J. Phys. Chem. B 2010, 114 (42), 13410. doi: 10.1021/jp1072654

    48. [48]

      (48) Lum, K.; Chandler, D.; Weeks, J. D. J. Phys. Chem. B 1999, 103 (22), 4570. doi: 10.1021/jp984327m

    49. [49]

      (49) Ren, X. P.; Zhou, B.; Wang, C. L. J. Chem. Phys. 2012, 137 (2), 024703. doi: 10.1063/1.4733719

    50. [50]

      (50) Boukhvalov, D. W.; Katsnelson, M. I.; Son, Y. W. Nano Lett. 2013, 13 (8), 3930. doi: 10.1021/nl4020292

    51. [51]

      (51) Deshmukh, S. A.; Kamath, G.; Baker, G. A.; Sumant, A. V.; Sankaranarayanan, S. K. R. S. Surf. Sci. 2013, 609, 129. doi: 10.1016/j.susc.2012.11.017

    52. [52]

      (52) Wei, N.; Peng, X. S.; Xu, Z. P. ACS Appl. Mater. Inter. 2014, 6 (8), 5877. doi: 10.1021/am500777b

    53. [53]

      (53) Pertsin, A.; Grunze, M. J. Phys. Chem. B 2004, 108 (4), 1357. doi: 10.1021/jp0356968

    54. [54]

      (54) Hub, J. S.; Winkler, F. K.; Merrick, M.; de Groot, B. L. D. J. Am. Chem. Soc. 2010, 132 (38), 13251. doi: 10.1021/jp0356968

    55. [55]

      (55) Zang, J.; Konduri, S.; Nair, S.; Sholl, D. S. ACS Nano 2009, 3 (6), 1548. doi: 10.1021/nn9001837

    56. [56]

      (56) Luzar, A.; Chandler, D. Nature 1996, 379 (6560), 55. doi: 10.1021/jp044247k

    57. [57]

      (57) Striolo, A. Nano Lett. 2006, 6 (4), 633. doi: 10.1038/379055a0

    58. [58]

      (58) Martí, J.; Sala, J.; Guàrdia, E. J. Mol. Liq. 2010, 153 (1), 72. doi: 10.1016/j.molliq.2009.09.015

    59. [59]

      (59) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79 (2), 926. doi: 10.1063/1.445869


  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    5. [5]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    6. [6]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    7. [7]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    8. [8]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    9. [9]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    10. [10]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    11. [11]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    12. [12]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    13. [13]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    16. [16]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    17. [17]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    18. [18]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    19. [19]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    20. [20]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

Metrics
  • PDF Downloads(600)
  • Abstract views(659)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return