Citation:
SHANG Ming-Feng, DUAN Pei-Quan, ZHAO Tian-Tian, TANG Wen-Chao, LIN Rui, HUANG Yu-Ying, WANG Jian-Qiang. In Situ XAFS Methods for Characterizing Catalyst Structure in Proton Exchange Membrane Fuel Cell[J]. Acta Physico-Chimica Sinica,
;2015, 31(8): 1609-1614.
doi:
10.3866/PKU.WHXB201505252
-
We established and developed an in situ X-ray absorption fine structure (XAFS) experimental testing device for characterizing hydrogen-oxygen proton exchange membrane fuel cells (PEMFC) on XAFS beamline BL14W1 at the Shanghai Synchrotron Radiation Facility (SSRF). XAFS data were collected under the operating state of the fuel cell with Pt/C and Pd/C as the cathode and anode catalysts, respectively, while the cell current-voltage (J-V) Curve and power density curves were monitored. Changes in the oxidation states of the Pt/C catalyst were observed during the reaction process at different potentials. Strong Pt-O bonds on the surfaces of the Pt were found to be induced at high potential; this may hinder the performance of Pt and reduce its oxygen reduction reaction (ORR) activity. The study also verified the reliability and feasibility of the herein established experimental apparatus and technique.
-
-
-
[1]
(1) Fu, X. C.; Sheng, W. X.; Yao, T. Y. Physical Chemistry, Volume II; Higher Education Press: Beijing, 2006; pp 141-143. [傅献彩, 沈文霞, 姚天杨. 物理化学. 下册. 北京: 高等教育出版社, 2006: 141-143.]
-
[2]
(2) Ryan, O. H.; Whitney, C.; Fritz, B. P. Fuel Cell Fundamentals; translated by Wang, X. H.; Huang, H. Publishing House of Electronics Industry: Beijing, 2007; pp 6-7. [Ryan, O. H.; Whitney. C.; Fritz, B. P. 燃料电池基础. 王晓红, 黄宏, 译. 北京: 电子工业出版社, 2007: 6-7.]
-
[3]
(3) Roth, C.; Martz, N.; Buhrmester, T.; Scherer, J.; Fuess, H. J. Phys. Chem. C 2002, 4 (15), 3555.
-
[4]
(4) Stoupin, S.; Chung, E. H.; Chattopadhyay, S.; Segre, C. U.; Smotkin, E. S. J. Phys. Chem. B 2006, 110 (20), 9932. doi: 10.1021/jp057047x
-
[5]
(5) Scott, F. J.; Roth, C.; Ramaker, D. E. J. Phys. Chem. C 2007, 111 (30), 11403. doi: 10.1021/jp072698+
-
[6]
(6) Lin, R.; Cao, C. H.; Zhao, T. T.; Huang, Z.; Li, B. J. Power Sources 2013, 223, 190. doi: 10.1016/j.jpowsour.2012.09.073
-
[7]
(7) Cao, C. H.; Lin, R; Zhao, T. T.; Huang, Z.; Ma, J. X. Acta Phys. -Chim. Sin. 2013, 29, 1. [曹春晖, 林瑞, 赵天天, 黄真, 马建新. 物理化学学报, 2013, 29, 1.] doi: 10.3866/PKU.WHXB 201209272
-
[8]
(8) Shao, M. H.; Adzic, R. R. J. Phys. Chem. B 2005, 109, 16563. doi: 10.1021/jp053450s
-
[9]
(9) Smith, M. C.; Gilbert, J. A.; Mawdsley, J. R.; Seifert, S.; Myers, D. J. J. Am. Chem. Soc. 2008, 130 (26), 8112. doi: 10.1021/ja801138t
-
[10]
(10) Shao, M. H.; Liu, P.; Adzic, R. R. J. Am. Chem. Soc. 2006, 128, 7408. doi: 10.1021/ja061246s
-
[11]
(11) Teliska, M.; O'Grady, W. E.; Ramaker, D. E. J. Phys. Chem. B 2005, 109 (16), 8076. doi: 10.1021/jp0502003
-
[12]
(12) Maniguet, S.; Mathew, R. J.; Russell, A. E. J. Phys. Chem. B 2000, 104 (9), 1998. doi: 10.1021/jp992947x
-
[13]
(13) Zhang, H. Y.; Cao, C. H.; Zhao, J.; Lin, R.; Ma, J. X. Chin. J. Catal. 2012, 33, 222. [张海艳, 曹春晖, 赵健, 林瑞, 马建新. 催化学报, 2012, 33, 222.]
-
[14]
(14) Russell, A. E.; Maniguet, S.; Mathew, R. J.; Yao, J.; Roberts, M. A.; Thompsett, D. J. Power Sources 2001, 96 (1), 226. doi: 10.1016/S0378-7753(01)00573-0
-
[15]
(15) Viswanathan, R.; Hou, G.; Liu, R.; Bare, S. R.; Modica, F.; Mickelson, G.; Segre, C. U.; Leyarovska, N.; Smotkin, E. S. J. Phys. Chem. B 2002, 106 (13), 3458. doi: 10.1021/jp0139787
-
[16]
(16) Teliska, M.; Murthi, V. S.; Mukerjee, S.; Ramaker, D. E. J. Phys. Chem. C 2007, 111 (26), 9267. doi: 10.1021/jp071106k
-
[17]
(17) Thomas, M. A.; Badri, S.; Jamie, S. L.; Nagappan, R.; David, E. B.; David, E. R.; Sanjeev, M. J. Phys. Chem. C 2010, 114 (2), 1028. doi: 10.1021/jp908082j
-
[18]
(18) Fan, Q. B.; Pu, C.; Smotkin, E. S. J. Electrochem. Soc. 1996, 143 (10), 3053. doi: 10.1149/1.1837163
-
[19]
(19) Viswanathan, R.; Liu, R.; Smotkin, E. S. Rev. Sci. Instrum. 2002, 73 (5), 2124. doi: 10.1063/1.1472469
-
[20]
(20) Ian, K.; Dunesh, K.; Adam, Y.; Nicholas, D.; Smotkin, E. S. J. Am. Chem. Soc. 2010, 132, 17611. doi: 10.1021/ja1081487
-
[21]
(21) Rice, C.; Tong, Y.; Oldfield, E.; Wieckowski, A.; Hahn, F.; Gloaguen, F.; Leger, J. M.; Lamy, C. J. Phys. Chem. C 2000, 104, 5803. doi: 10.1021/jp0007179
-
[22]
(22) Sanicharane, S.; Bo, A.; Sompalli, B.; Gurau, B.; Smotkin, E. S. J. Electrochem. Soc. 2002, 149 (5), A554.
-
[23]
(23) Vijayaraghavan, G.; Gao, L.; Korzeniewski, C. Langmuir 2003, 19, 2333. doi: 10.1021/la0207466
-
[24]
(24) Tkach, I.; Panchenko, A.; Kaz, T.; gel, V.; Friedrich, K. A.; Roduner, E. Phys. Chem. Chem. Phys. 2004, 6 (23), 5419. doi: 10.1039/b411108g
-
[25]
(25) Lebedeva, N. P.; Rodes, A.; Feliu, J. M.; Koper, M. T. M.; Santeen, R. A. V. J. Phys. Chem. B 2002, 106, 9863. doi: 10.1021/jp0203806
-
[26]
(26) Kim, C. S.; Korzeniewski, C. Anal. Chem. 1997, 69 (13), 2349. doi: 10.1021/ac961306k
-
[27]
(27) Shin, J.; Korzeniewski, C. J. Phys. Chem. 1995, 99 (11), 3419. doi: 10.1021/j100011a003
-
[28]
(28) Milan, M. J.; Gianluigi, A. B.; Georgios, D. P.; Feihong, N.; Jelena, M. J. J. Phys. Chem. C 2014, 118, 8723. doi: 10.1021/jp412292w
-
[29]
(29) Zawodzinski, T. A.; Derouin, C.; Radzinski, S.; Sherman, R. J.; Smith, V. T.; Springer, T. E.; ttesfeld, S. J. Electrochem. Soc. 1993, 140 (4), 1041. doi: 10.1149/1.2056194
-
[30]
(30) Giorgia, G.; Agnieszka, W.; Marco, M.; Luca, O.; Emiliano, P.; Sonia, D.; Arianna, M.; Roberto, M.; Andrea, D. C. J. Phys. Chem. C 2012, 116, 12791. doi: 10.1021/jp2099569
-
[31]
(31) Bridgid, N. W.; Bin, F.; Shan, S. Y.; Valeri, P.; Zhu, P. Y.; Rameshwori, L.; Chen, Y. S.; Jin, L.; Jun, Y.; Yang, L. F.; Shao, M. H.; Zhong, C. J. Chem. Mater. 2012, 24, 4283. doi: 10.1021/cm301613j
-
[32]
(32) Shin-ichi, N.; Takashi, A.; Masakuni, Y.; Takuya, O.; Hiroyuki, O.; Takayuki, I.; Hajime, K.; Tomoya, U.; Mizuki, T.; Yasuhiro, I. J. Phys. Chem. C 2013, 117, 13094. doi: 10.1021/jp402438e
-
[1]
-
-
-
[1]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[2]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[3]
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
-
[4]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[5]
Yang Li , Xiaoxu Liu , Tianyi Ji , Man Zhang , Xueru Yan , Mengjie Yao , Dawei Sheng , Shaodong Li , Peipei Ren , Zexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551
-
[6]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[7]
Jun LI , Huipeng LI , Hua ZHAO , Qinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401
-
[8]
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
-
[9]
Zhaoyu Wen , Na Han , Yanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001
-
[10]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[11]
Yixuan Wang , Canhui Zhang , Xingkun Wang , Jiarui Duan , Kecheng Tong , Shuixing Dai , Lei Chu , Minghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004
-
[12]
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071
-
[13]
Dong Xiang , Kunzhen Li , Kanghua Miao , Ran Long , Yujie Xiong , Xiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027
-
[14]
Lingbang Qiu , Jiangmin Jiang , Libo Wang , Lang Bai , Fei Zhou , Gaoyu Zhou , Quanchao Zhuang , Yanhua Cui . In Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040
-
[15]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016
-
[16]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[17]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[18]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[19]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044
-
[20]
Xueting Feng , Ziang Shang , Rong Qin , Yunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005
-
[1]
Metrics
- PDF Downloads(277)
- Abstract views(688)
- HTML views(51)