Citation:
HOU Li-Mei, WEN Zhi, LI Yin-Xiang, HU Hua-You, KAN Yu-He, SU Zhong-Min. Molecular Design of Indolizine Derivative as Sensitizers for Organic Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica,
;2015, 31(8): 1504-1512.
doi:
10.3866/PKU.WHXB201505211
-
Nine new D-π-A metal-free sensitizers INI1-INI9 with indolizino [3,4,5-ab] isoindole (INI) as electronic donor were investigated using the density functional theory (DFT) and time-dependent DFT calculations. Compared to D5 and D9, some major factors affecting the performance of the cell, including light harvesting, electron injection, dye regeneration, and charge recombination are taken into consideration. Calculations show that these novel INI-based sensitizers have an absorption maximum at 440-500 nm when π conjugated bridge attached at different position of aromatic ring and an excellent charge separation characters. INI2 shows better performance than that of D9 due to the theoretical maximum short-circuit current density of 13.26 mA·cm-2. Fortunately, condensed Fukui function calculation suggested that the INI2 be easiest to obtain due to a largest nucleophilic index at 2 position of INI aromatic ring. Based on the calculations of dyes adsorption on TiO2 cluster, indirect electron injection may be the main path from dye to TiO2 for INI2 and D5. Our calculations indicate that the INI dyes will be promising candidates for fabrication of the high performance dye-sensitized solar cells.
-
-
-
[1]
(1) O'Regan, B.; Grätzel, M. Nature 1991, 353 (6346), 737. doi: 10.1038/353737a0
-
[2]
(2) Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334 (6056), 629. doi: 10.1126/science.1209688
-
[3]
(3) Mishra, A.; Fischer, M. K. R.; Bäuerle, P. Angew. Chem. Int. Edit. 2009, 48 (14), 2474. doi: 10.1002/anie.v48:14
-
[4]
(4) He, J. J.; Chen, S. X.; Wang, T. T.; Zeng, H. P. Chin. J. Org. Chem. 2012, 32 (3), 472. [何俊杰, 陈舒欣, 王婷婷, 曾和平. 有机化学, 2012, 32 (3), 472.]
-
[5]
(5) Qu, S. Y.; Hua, J. L.; Tian, H. Sci. Sin. Chim. 2012, 42, 567. [瞿三寅, 花建丽, 田禾. 中国科学: 化学, 2012, 42, 567.]
-
[6]
(6) Pei, J.; Liang, M.; Chen, J.; Tao, Z. L.; Xu, W. Acta Phys. -Chim. Sin. 2008, 24, 1950. [裴娟, 梁茂, 陈军, 陶占良, 许炜. 物理化学学报, 2008, 24, 1950.] doi: 10.1016/S1872-1508(08)60077-7
-
[7]
(7) Wang, Z. S.; Cui, Y.; Hara, K.; Dan-oh, Y.; Kasada, C.; Shinpo, A. Adv. Mater. 2007, 19 (8), 1138. doi: 10.1002/adma. 200601020
-
[8]
(8) Sayama, K.; Hara, K.; Mori, N.; Satsuki, M.; Suga, S.; Tsuka shi, S.; Abe, Y.; Sugihara, H.; Arakawa, H. Chem. Commun. 2000, 13, 1173. doi: 10.1039/b001517m
-
[9]
(9) Wu, W. J.; Yang, J. B.; Hua, J. L.; Tang, J.; Zhang, L.; Long, Y. T.; Tian, H. J. Mater. Chem. 2010, 20 (9), 1772. doi: 10.1039/b918282a
-
[10]
(10) Martinez-Diaz, M. V.; de la Torre, G.; Torres, T. Chem. Commun. 2010, 46 (38), 7090. doi: 10.1039/c0cc02213f
-
[11]
(11) Amacher, A.; Yi, C.; Yang, J.; Bircher, M. P.; Fu, Y.; Cascella, M.; Gratzel, M.; Decurtins, S.; Liu, S. X. Chem. Commun. 2014, 50 (49), 6540. doi: 10.1039/C4CC02696A
-
[12]
(12) Geng, Y.; Pop, F.; Yi, C.; Avarvari, N.; Gratzel, M.; Decurtins, S.; Liu, S. X. New J. Chem. 2014, 38 (7), 3269. doi: 10.1039/c4nj00428k
-
[13]
(13) Chen, X. M.; Jia, C. Y.; Wan, Z. Q.; Yao, X. J. Acta Phys. -Chim. Sin. 2014, 30, 273. [陈喜明, 贾春阳, 万中全, 姚小军. 物理化学学报, 2014, 30, 273.] doi: 10.3866/PKU.WHXB 201311262
-
[14]
(14) Ito, S.; Zakeeruddin, S. M.; Humphry-Baker, R.; Liska, P.; Charvet, R.; Comte, P.; Nazeeruddin, M. K.; Péchy, P.; Takata, M.; Miura, H. Adv. Mater. 2006, 18 (9), 1202. doi: 10.1002/adma.200502540
-
[15]
(15) Wu, Y.; Marszalek, M.; Zakeeruddin, S. M.; Zhang, Q.; Tian, H.; Grätzel, M.; Zhu, W. Energy Environ. Sci. 2012, 5 (8), 8261. doi: 10.1039/c2ee22108j
-
[16]
(16) Mitsumori, T.; Bendikov, M.; Dautel, O.; Wudl, F.; Shioya, T.; Sato, H.; Sato, Y. J. Am. Chem. Soc. 2004, 126 (51), 16793. doi: 10.1021/ja049214x
-
[17]
(17) Hagberg, D. P.; Edvinsson, T.; Marinado, T.; Boschloo, G.; Hagfeldt, A.; Sun, L. Chem. Commun. 2006, 2245. doi: 10.1039/b603002e
-
[18]
(18) Hagberg, D. P.; Yum, J. H.; Lee, H.; De Angelis, F.; Marinado, T.; Karlsson, K. M.; Humphry-Baker, R.; Sun, L.; Hagfeldt, A.; Grätzel, M.; Nazeeruddin, M. K. J. Am. Chem. Soc. 2008, 130. doi: 10.1021/ja800066y
-
[19]
(19) Becke, A. D. J. Chem. Phys. 1993, 98 (7), 5648. doi: 10.1063/1.464913
-
[20]
(20) Perdew, J. P.; Burke, K.; Ernzerhof, M. Physical Review Letters 1996, 77 (18), 3865. doi: 10.1103/PhysRevLett.77.3865
-
[21]
(21) Lynch, B. J.; Fast, P. L.; Harris, M.; Truhlar, D. G. J. Phys. Chem. A 2000, 104 (21), 4811. doi: 10.1021/jp000497z
-
[22]
(22) Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2006, 110 (15), 5121.
-
[23]
(23) Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393 (1-3), 51. doi: 10.1016/j.cplett.2004.06.011
-
[24]
(24) Tawada, Y.; Tsuneda, T.; Yanagisawa, S.; Yanai, T.; Hirao, K. J. Chem. Phys. 2004, 120 (18), 8425. doi: 10.1063/1.1688752
-
[25]
(25) Chai, J. D.; Head- rdon, M. Phys. Chem. Chem. Phys. 2008, 10 (44), 6615. doi: 10.1039/b810189b
-
[26]
(26) Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102 (11), 1995. doi: 10.1021/jp9716997
-
[27]
(27) Lu, T.; Chen, F. J. Comput. Chem. 2012, 33 (5), 580. doi: 10.1002/jcc.v33.5
-
[28]
(28) Sanchez-de-Armas, R.; San Miguel, M. A.; Oviedo, J.; Sanz, J. F. Phys. Chem. Chem. Phys. 2012, 14 (1), 225. doi: 10.1039/C1CP22058F
-
[29]
(29) Zhang, J.; Li, H.B.; Sun, S. L.; Geng, Y.; Wu, Y.; Su, Z. M. J. Mater. Chem. 2012, 22 (2), 568. doi: 10.1039/C1JM13028E
-
[30]
(30) Zhang, J.; Kan, Y. H.; Li, H. B.; Geng, Y.; Wu, Y.; Su, Z. M. Dyes Pigments 2012, 95 (2), 313. doi: 10.1016/j.dyepig. 2012.05.020
-
[31]
(31) Pastore, M.; Angelis, F. D. ACS Nano 2009, 4 (1), 556. doi: 10.1021/nn901518
-
[32]
(32) Soler, J. M.; Artacho, E.; Gale; J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. J. Phys.: -Condes. Matter 2002, 14 (11), 2745. doi: 10.1088/0953-8984/14/11/302
-
[33]
(33) Ordejón, P.; Artacho, E.; Soler, J. M. Phys. Rev. B 1996, 53 (16), R10441.
-
[34]
(34) Gratzel, M. Nature 2001, 414 (6861), 338.
-
[35]
(35) Cahen, D.; Hodes, G.; Grätzel, M.; Guillemoles, J. F.; Riess, I. J. Phys. Chem. B 2000, 104 (9), 2053. doi: 10.1021/jp993187t
-
[36]
(36) Kim, B. G.; Zhen, C. G.; Jeong, E. J.; Kieffer, J.; Kim, J. Adv. Funct. Mater. 2012, 22 (8), 1606. doi: 10.1002/adfm.v22.8
-
[37]
(37) Jacquemin, D.; Perpète, E. A.; Scuseria, G. E.; Ciofini, I.; Adamo, C. J. Chem. Theory. Comput. 2008, 4 (1), 123.
-
[38]
(38) Dreuw, A.; Head- rdon, M. J. Am. Chem. Soc. 2004, 126 (12), 4007. doi: 10.1021/ja039556n
-
[39]
(39) Fabian, J. Theor. Chem. Acc. 2001, 106 (3), 199. doi: 10.1007/s002140100250
-
[40]
(40) Laurent, A. D.; Jacquemin, D. Int. J. Quantum Chem. 2013, 113 (17), 2019. doi: 10.1002/qua.24438
-
[41]
(41) Pastore, M.; Mosconi, E.; De Angelis, F.; Grätzel, M. J. Phys. Chem. C 2010, 114 (15), 7205. doi: 10.1021/jp100713r
-
[42]
(42) Laurent, A. D.; Adamo, C.; Jacquemin, D. Phys. Chem. Chem. Phys. 2014, 16 (28), 14334. doi: 10.1039/c3cp55336a
-
[43]
(43) Zhan, W. S.; Pan, S.; Li Y. Z.; Chen, M. D. Acta Phys. -Chim. Sin. 2010, 26 (5), 1408. [詹卫伸, 潘石, 李源作, 陈茂笃. 物理化学学报, 2010, 26 (5), 1408.] doi: 10.1039/c3cp55336a
-
[44]
(44) Zhan, W. S.; Li, R.; Pan, S.; Guo, Y. N.; Zhang, Y. Acta Phys. -Chim. Sin. 2013, 29, 255. [詹卫伸, 李睿, 潘石, 郭英楠, 张毅. 物理化学学报, 2013, 29, 255.] doi: 10.3866/PKU.WHXB201211221
-
[45]
(45) Le Bahers, T.; Adamo, C.; Ciofini, I. J. Chem. Theory. Comput. 2011, 7 (8), 2498. doi: 10.1021/ct200308m
-
[46]
(46) Grätzel, M. Accounts Chem. Res. 2009, 42 (11), 1788. doi: 10.1021/ar900141y
-
[47]
(47) Vlachopoulos, N.; Liska, P.; Augustynski, J.; Grätzel, M. J. Am. Chem. Soc. 1988, 110 (4), 1216. doi: 10.1021/ja00212a033
-
[48]
(48) Jiao, Y.; Ma, W.; Meng, S. Chem. Phys. Lett. 2013, 586 , 97.
-
[49]
(49) Zhang, J. Z.; Zhang, J.; Li, H. B.; Wu, Y.; Xu, H. L.; Zhang, M.; Geng, Y.; Su, Z. M. J. Power Sources 2014, 267, 300.
-
[50]
(50) Ma, W.; Jiao, Y.; Meng, S. J. Phys. Chem. C 2014, 118 (30), 16447. doi: 10.1021/jp410982e
-
[51]
(51) Daeneke, T.; Mozer, A. J.; Uemura, Y.; Makuta, S.; Fekete, M.; Tachibana, Y.; Koumura, N.; Bach, U.; Spiccia, L. J. Am. Chem. Soc. 2012, 134 (41), 16925. doi: 10.1021/ja3054578
-
[52]
(52) Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. [刘述斌. 物理化学学报, 2009, 25, 590.] doi: 10.3866/PKU.WHXB20090332
-
[53]
(53) Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106 (14), 4049. doi: 10.1021/ja00326a036
-
[54]
(54) Makedonas, C.; Mitsopoulou, C. A. European Journal of Inorganic Chemistry 2006, 2006 (3), 590.
-
[55]
(55) Clifford, J. N.; Palomares, E.; Nazeeruddin, M. K.; Grätzel, M.; Nelson, J.; Li, X.; Long, N. J.; Durrant, J. R. J. Am. Chem. Soc. 2004, 126 (16), 5225. doi: 10.1021/ja039924n
-
[1]
-
-
-
[1]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[2]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[3]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[4]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[5]
Xiaochen Zhang , Fei Yu , Jie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026
-
[6]
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
-
[7]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[8]
Fengying Zhang , Yanglin Mei , Yuman Jiang , Shenshen Zheng , Kaibo Zheng , Ying Zhou . Research progress of transient absorption spectroscopy in solar energy conversion and utilization. Acta Physico-Chimica Sinica, 2025, 41(9): 100118-0. doi: 10.1016/j.actphy.2025.100118
-
[9]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006
-
[10]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[11]
Tongqi Ye , Yanqing Wang , Qi Wang , Huaiping Cong , Xianghua Kong , Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128
-
[12]
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064
-
[13]
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
-
[14]
Nengmin ZHU , Wenhao ZHU , Xiaoyao YIN , Songzhi ZHENG , Hao LI , Zeyuan WANG , Wenhao WEI , Xuanheng CHEN , Weihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419
-
[15]
Yameen Ahmed , Xiangxiang Feng , Yuanji Gao , Yang Ding , Caoyu Long , Mustafa Haider , Hengyue Li , Zhuan Li , Shicheng Huang , Makhsud I. Saidaminov , Junliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057
-
[16]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[17]
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
-
[18]
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
-
[19]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[20]
Zhengkun QIN , Zicong PAN , Hui TIAN , Wanyi ZHANG , Mingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429
-
[1]
Metrics
- PDF Downloads(386)
- Abstract views(751)
- HTML views(15)