Citation:
JIANG Xiao-Jia, JIA Jian-Ming, LU Han-Feng, ZHU Qiu-Lian, HUANG Hai-Feng. Preparation and Characterization of Sr/TiO2 Catalysts with Different Structures and High Photocatalytic Activity under Visible Light[J]. Acta Physico-Chimica Sinica,
;2015, 31(7): 1399-1405.
doi:
10.3866/PKU.WHXB201505191
-
Sr/TiO2 catalysts with different Sr/Ti molar ratios (n(Sr)/n(Ti)) were synthesized by fractional precipitation. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectrometry, and ultraviolet-visible diffuse reflectance spectrophotometry (UV-Vis RDS). The photocatalytic activity of the samples under visible light was determined using the photocatalytic degradation of methylene blue. The photocatalytic activities and structures of the catalysts changed with n(Sr)/n(Ti) molar ratio. When n(Sr)/n(Ti)≤3/2, the catalysts, which were composed of TiO2 and SrTiO3, showed a globular structure. When n(Sr)/n(Ti) was between 3/2 and 4/1, the catalysts had a flaky structure. As the n(Sr)/n(Ti) increased, the composition of the catalysts changed from SrTiO3 and Sr24 to Sr24 and Sr(OH)2·H2O. When the n(Sr)/n(Ti) ratio was 9/1, the catalyst mainly consisted of Sr(OH)2 ·H2O and exhibited an acicular structure. The sample with n(Sr)/n(Ti)=4/1 exhibited the highest photocatalytic activity; its first-order reaction rate constant was 5.0 times as high as that of the perovskite catalyst SrTiO3 and 86.7 times as high as that of the commercial Ti photocatalyst P25.
-
-
-
[1]
(1) Hu, P.; Hou, D.; Shi, H.; Chen, C.; Huang, Y.; Hu, X. Applied Surface Science 2014, 319, 244. doi: 10.1016/j.apsusc.2014.07.141
-
[2]
(2) Leong, K. H.; Gan, B. L.; Ibrahim, S.; Saravanan, P. Applied Surface Science 2014, 319, 128. doi: 10.1016/j.apsusc.2014.06.153
-
[3]
(3) Dong, F.; Xiong, T.; Sun, Y.; Zhao, Z.; Zhou, Y.; Feng, X.; Wu, Z. Chemical Communications 2014, 50, 10386. doi: 10.1039/C4CC02724H
-
[4]
(4) Dong, F.; Li, Q.; Sun, Y.; Ho, W. ACS Catalysis 2014, 4, 4341. doi: 10.1021/cs501038q
-
[5]
(5) Xiong, T.; Huang, H.; Sun, Y.; Dong, F. Journal of Materials Chemistry A 2015, 3, 6118. doi: 10.1039/C5TA00103J
-
[6]
(6) Dong, F.; Wang, Z.; Li, Y.; Ho, W.; Lee, S. C. Environmental Science & Technology 2014, 48, 10345. doi: 10.1021/es502290f
-
[7]
(7) Huang, X.; Chen, H. Applied Surface Science 2013, 284, 843. doi: 10.1016/j.apsusc.2013.08.019
-
[8]
(8) Wang, Y.; Li, J.; Peng, P.; Lu, T.; Wang, L. Applied Surface Science 2008, 254, 5276. doi: 10.1016/j.apsusc.2008.02.050
-
[9]
(9) Kurokawa, H.; Yang, L.; Jacobson, C. P.; De Jonghe, L. C.; Visco, S. J. Journal of Power Sources 2007, 164, 510. doi: 10.1016/j.jpowsour.2006.11.048
-
[10]
(10) Kuwata, N.; Sata, N.; Saito, S.; Tsurui, T.; Yugami, H. Solid State Ionics 2006, 177, 2347. doi: 10.1016/j.ssi.2006.05.043
-
[11]
(11) Xie, J.; Ji, T. H.; Ouyang, X. H.; Mao, Z. Y.; Shi, H. J. Solid State Communications 2008, 147, 226. doi: 10.1016/j.ssc.2008.05.026
-
[12]
(12) Ge, W.W.; Zhu, C. H.; An, H. P.; Li, Z. Z.; Tang, G. D.; Hou, D. L. Ceramics International 2014, 40, 1569. doi: 10.1016/j.ceramint.2013.07.044
-
[13]
(13) Jing, L.; Xin, B.; Yuan, F.; Xue, L.; Wang, B.; Fu, H. The Journal of Physical Chemistry B 2006, 110, 17860. doi: 10.1021/jp063148z
-
[14]
(14) Sulaeman, U.; Yin, S.; Sato, T. Effect of Sr/Ti Ratio on the Photocatalytic Properties of SrTiO3. In Materials Science and Engineering, 3rd International Congress on Ceramics, Osaka, Japan, Nov 14-18, 2010; IOP Science: England, 2011.
-
[15]
(15) Xu, J.; Wei, Y.; Huang, Y.; Wang, J.; Zheng, X.; Sun, Z.; Fan, L.; Wu, J. Ceramics International 2014, 40, 10583. doi: 10.1016/j.ceramint.2014.03.037
-
[16]
(16) Konta, R.; Ishii, T.; Kato, H.; Kudo, A. The Journal of Physical Chemistry B 2004, 108, 8992. doi: 10.1021/jp049556p
-
[17]
(17) Wang, C.; Qiu, H.; Inoue, T.; Yao, Q. International Journal of Hydrogen Energy 2014, 39, 12507. doi: 10.1016/j.ijhydene.2014.06.059
-
[18]
(18) Sulaeman, U.; Yin, S.; Sato, T. Applied Physics Letters 2010, 97, 103102. doi: 10.1063/1.3486466
-
[19]
(19) Ohno, T.; Tsubota, T.; Nakamura, Y.; Sayama, K. Applied Catalysis A: General 2005, 288, 74. doi: 10.1016/j.apcata.2005.04.035
-
[20]
(20) Yang, G. R.; Yan, W.; Wang, J. N.; Zhang, Q.; Yang, H. H. Journal of Sol-Gel Science and Technology 2014, 71, 159. doi: 10.1007/s10971-014-3346-0
-
[21]
(21) Jiao, Z. B.; Chen, T.; Yu, H. C.; Wang, T.; Lu, G. X.; Bi, Y. P. Journal of Colloid and Interface Science 2014, 419, 95. doi: 10.1016/j.jcis.2013.12.056
-
[22]
(22) Lu, P.W. Fundamentals of Inorganic Materials Science;Wuhan University of Technology Press:Wuhan, 2006. [陆佩文. 无机材料科学基础. 武汉: 武汉理工大学出版社, 2006.]
-
[23]
(23) Chen, J. Z. Modern Crystal Chemistry; Science Press: Beijing, 2010. [陈敬中. 现代晶体化学. 北京: 科学出版社, 2010.]
-
[24]
(24) Feng, X. L.; Wang, G. Y. Journal of Changchun University of Science and Technology (Natural Science Edition) 2005, 28, 76. [冯秀丽, 王公应. 长春理工大学学报(自然科学版), 2005, 28, 76.]
-
[25]
(25) Gao, Y. F.; Masuda, Y.; Yonezawa, T.; Koumoto, K. Chemistry of Materials 2002, 14, 5006. doi: 10.1021/cm020358p
-
[26]
(26) Huang, S. T.; Lee, W.W.; Chang, J. L.; Huang, W. S.; Chou, S. Y.; Chen, C. C. Journal of the Taiwan Institute of Chemical Engineers 2014, 45, 1927. doi: 10.1016/j.jtice.2014.02.003
-
[27]
(27) Yuvaraj, S.; Lin, F. Y.; Chang, T. H.; Yeh, C. T. Journal of Physical Chemistry B 2003, 107, 1044. doi: 10.1021/jp026961c
-
[28]
(28) Cai, S.; Xu, Y. D.; Cai, S.; Li, X. S.; Huang, J. S.; Guo, X. X. Chinese Journal of Catalysis 1996, 17, 22. [余林, 徐奕德, 蔡晟, 李新生, 黄家生, 郭燮贤. 催化学报, 1996, 17, 22.]
-
[29]
(29) Yu, C.; Fan, C.; Yu, J. C.; Zhou, W.; Yang, K. Materials Research Bulletin 2011, 46, 140. doi: 10.1016/j.materresbull.2010.08.013
-
[30]
(30) Tennakone, K.; Ileperuma, O. A.; Bandara, J. M. S.; Kiridena, W. C. B. Semiconductor Science and Technology 1992, 7, 423
-
[31]
(31) Yang, L. B.; Jing, L. Q.; Li, S. D.; Jiang, B. J.; Fu, W.; Fu, H. G. Chemical Journal of Chinese Universities 2007, 28, 415. [杨立滨, 井立强, 李姝丹, 蒋保江, 付薇, 付宏刚. 高等学校化学学报, 2007, 28, 415.]
-
[32]
(32) Xu, Y. L. Fundamentals of Oxide and Compound Semiconductor; Xidian University Press: Xian, 1991. [徐毓龙. 氧化物与化合物半导体基础. 西安: 西安电子科技大学出版社, 1991.]
-
[33]
(33) Lee, K. H.; Ishizaki, A.; Kim, S.W.; Ohta, H.; Koumoto, K. Journal of Applied Physics 2007, 102, 033702.
-
[1]
-
-
-
[1]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[2]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016
-
[3]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[4]
Yuanqing Wang , Yusong Pan , Hongwu Zhu , Yanlei Xiang , Rong Han , Run Huang , Chao Du , Chengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050
-
[5]
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
-
[6]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020
-
[7]
Yichang Liu , Li An , Dan Qu , Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105
-
[8]
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039
-
[9]
Junjie TANG , Yunting ZHANG , Zhengjiang LIU , Jiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420
-
[10]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014
-
[11]
Xinzhe HUANG , Lihui XU , Yue YANG , Liming WANG , Zhangyong LIU , Zhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212
-
[12]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[13]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[14]
Xia ZHANG , Yushi BAI , Xi CHANG , Han ZHANG , Haoyu ZHANG , Liman PENG , Shushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255
-
[15]
Yifan ZHAO , Qiyun MAO , Meijing GUO , Guoying ZHANG , Tongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001
-
[16]
Haitao Wang , Lianglang Yu , Jizhou Jiang , Arramel , Jing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047
-
[17]
Jiajia Wang , Sibo Huang , Xijing Gao , Chaoxun Liu , Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050
-
[18]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014
-
[19]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005
-
[20]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016
-
[1]
Metrics
- PDF Downloads(301)
- Abstract views(554)
- HTML views(7)