Citation: JIANG Xiao-Jia, JIA Jian-Ming, LU Han-Feng, ZHU Qiu-Lian, HUANG Hai-Feng. Preparation and Characterization of Sr/TiO2 Catalysts with Different Structures and High Photocatalytic Activity under Visible Light[J]. Acta Physico-Chimica Sinica, ;2015, 31(7): 1399-1405. doi: 10.3866/PKU.WHXB201505191 shu

Preparation and Characterization of Sr/TiO2 Catalysts with Different Structures and High Photocatalytic Activity under Visible Light

  • Received Date: 24 March 2015
    Available Online: 19 May 2015

    Fund Project: 国家自然科学基金(21107096)资助项目 (21107096)

  • Sr/TiO2 catalysts with different Sr/Ti molar ratios (n(Sr)/n(Ti)) were synthesized by fractional precipitation. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectrometry, and ultraviolet-visible diffuse reflectance spectrophotometry (UV-Vis RDS). The photocatalytic activity of the samples under visible light was determined using the photocatalytic degradation of methylene blue. The photocatalytic activities and structures of the catalysts changed with n(Sr)/n(Ti) molar ratio. When n(Sr)/n(Ti)≤3/2, the catalysts, which were composed of TiO2 and SrTiO3, showed a globular structure. When n(Sr)/n(Ti) was between 3/2 and 4/1, the catalysts had a flaky structure. As the n(Sr)/n(Ti) increased, the composition of the catalysts changed from SrTiO3 and Sr24 to Sr24 and Sr(OH)2·H2O. When the n(Sr)/n(Ti) ratio was 9/1, the catalyst mainly consisted of Sr(OH)2 ·H2O and exhibited an acicular structure. The sample with n(Sr)/n(Ti)=4/1 exhibited the highest photocatalytic activity; its first-order reaction rate constant was 5.0 times as high as that of the perovskite catalyst SrTiO3 and 86.7 times as high as that of the commercial Ti photocatalyst P25.

  • 加载中
    1. [1]

      (1) Hu, P.; Hou, D.; Shi, H.; Chen, C.; Huang, Y.; Hu, X. Applied Surface Science 2014, 319, 244. doi: 10.1016/j.apsusc.2014.07.141

    2. [2]

      (2) Leong, K. H.; Gan, B. L.; Ibrahim, S.; Saravanan, P. Applied Surface Science 2014, 319, 128. doi: 10.1016/j.apsusc.2014.06.153

    3. [3]

      (3) Dong, F.; Xiong, T.; Sun, Y.; Zhao, Z.; Zhou, Y.; Feng, X.; Wu, Z. Chemical Communications 2014, 50, 10386. doi: 10.1039/C4CC02724H

    4. [4]

      (4) Dong, F.; Li, Q.; Sun, Y.; Ho, W. ACS Catalysis 2014, 4, 4341. doi: 10.1021/cs501038q

    5. [5]

      (5) Xiong, T.; Huang, H.; Sun, Y.; Dong, F. Journal of Materials Chemistry A 2015, 3, 6118. doi: 10.1039/C5TA00103J

    6. [6]

      (6) Dong, F.; Wang, Z.; Li, Y.; Ho, W.; Lee, S. C. Environmental Science & Technology 2014, 48, 10345. doi: 10.1021/es502290f

    7. [7]

      (7) Huang, X.; Chen, H. Applied Surface Science 2013, 284, 843. doi: 10.1016/j.apsusc.2013.08.019

    8. [8]

      (8) Wang, Y.; Li, J.; Peng, P.; Lu, T.; Wang, L. Applied Surface Science 2008, 254, 5276. doi: 10.1016/j.apsusc.2008.02.050

    9. [9]

      (9) Kurokawa, H.; Yang, L.; Jacobson, C. P.; De Jonghe, L. C.; Visco, S. J. Journal of Power Sources 2007, 164, 510. doi: 10.1016/j.jpowsour.2006.11.048

    10. [10]

      (10) Kuwata, N.; Sata, N.; Saito, S.; Tsurui, T.; Yugami, H. Solid State Ionics 2006, 177, 2347. doi: 10.1016/j.ssi.2006.05.043

    11. [11]

      (11) Xie, J.; Ji, T. H.; Ouyang, X. H.; Mao, Z. Y.; Shi, H. J. Solid State Communications 2008, 147, 226. doi: 10.1016/j.ssc.2008.05.026

    12. [12]

      (12) Ge, W.W.; Zhu, C. H.; An, H. P.; Li, Z. Z.; Tang, G. D.; Hou, D. L. Ceramics International 2014, 40, 1569. doi: 10.1016/j.ceramint.2013.07.044

    13. [13]

      (13) Jing, L.; Xin, B.; Yuan, F.; Xue, L.; Wang, B.; Fu, H. The Journal of Physical Chemistry B 2006, 110, 17860. doi: 10.1021/jp063148z

    14. [14]

      (14) Sulaeman, U.; Yin, S.; Sato, T. Effect of Sr/Ti Ratio on the Photocatalytic Properties of SrTiO3. In Materials Science and Engineering, 3rd International Congress on Ceramics, Osaka, Japan, Nov 14-18, 2010; IOP Science: England, 2011.

    15. [15]

      (15) Xu, J.; Wei, Y.; Huang, Y.; Wang, J.; Zheng, X.; Sun, Z.; Fan, L.; Wu, J. Ceramics International 2014, 40, 10583. doi: 10.1016/j.ceramint.2014.03.037

    16. [16]

      (16) Konta, R.; Ishii, T.; Kato, H.; Kudo, A. The Journal of Physical Chemistry B 2004, 108, 8992. doi: 10.1021/jp049556p

    17. [17]

      (17) Wang, C.; Qiu, H.; Inoue, T.; Yao, Q. International Journal of Hydrogen Energy 2014, 39, 12507. doi: 10.1016/j.ijhydene.2014.06.059

    18. [18]

      (18) Sulaeman, U.; Yin, S.; Sato, T. Applied Physics Letters 2010, 97, 103102. doi: 10.1063/1.3486466

    19. [19]

      (19) Ohno, T.; Tsubota, T.; Nakamura, Y.; Sayama, K. Applied Catalysis A: General 2005, 288, 74. doi: 10.1016/j.apcata.2005.04.035

    20. [20]

      (20) Yang, G. R.; Yan, W.; Wang, J. N.; Zhang, Q.; Yang, H. H. Journal of Sol-Gel Science and Technology 2014, 71, 159. doi: 10.1007/s10971-014-3346-0

    21. [21]

      (21) Jiao, Z. B.; Chen, T.; Yu, H. C.; Wang, T.; Lu, G. X.; Bi, Y. P. Journal of Colloid and Interface Science 2014, 419, 95. doi: 10.1016/j.jcis.2013.12.056

    22. [22]

      (22) Lu, P.W. Fundamentals of Inorganic Materials Science;Wuhan University of Technology Press:Wuhan, 2006. [陆佩文. 无机材料科学基础. 武汉: 武汉理工大学出版社, 2006.]

    23. [23]

      (23) Chen, J. Z. Modern Crystal Chemistry; Science Press: Beijing, 2010. [陈敬中. 现代晶体化学. 北京: 科学出版社, 2010.]

    24. [24]

      (24) Feng, X. L.; Wang, G. Y. Journal of Changchun University of Science and Technology (Natural Science Edition) 2005, 28, 76. [冯秀丽, 王公应. 长春理工大学学报(自然科学版), 2005, 28, 76.]

    25. [25]

      (25) Gao, Y. F.; Masuda, Y.; Yonezawa, T.; Koumoto, K. Chemistry of Materials 2002, 14, 5006. doi: 10.1021/cm020358p

    26. [26]

      (26) Huang, S. T.; Lee, W.W.; Chang, J. L.; Huang, W. S.; Chou, S. Y.; Chen, C. C. Journal of the Taiwan Institute of Chemical Engineers 2014, 45, 1927. doi: 10.1016/j.jtice.2014.02.003

    27. [27]

      (27) Yuvaraj, S.; Lin, F. Y.; Chang, T. H.; Yeh, C. T. Journal of Physical Chemistry B 2003, 107, 1044. doi: 10.1021/jp026961c

    28. [28]

      (28) Cai, S.; Xu, Y. D.; Cai, S.; Li, X. S.; Huang, J. S.; Guo, X. X. Chinese Journal of Catalysis 1996, 17, 22. [余林, 徐奕德, 蔡晟, 李新生, 黄家生, 郭燮贤. 催化学报, 1996, 17, 22.]

    29. [29]

      (29) Yu, C.; Fan, C.; Yu, J. C.; Zhou, W.; Yang, K. Materials Research Bulletin 2011, 46, 140. doi: 10.1016/j.materresbull.2010.08.013

    30. [30]

      (30) Tennakone, K.; Ileperuma, O. A.; Bandara, J. M. S.; Kiridena, W. C. B. Semiconductor Science and Technology 1992, 7, 423

    31. [31]

      (31) Yang, L. B.; Jing, L. Q.; Li, S. D.; Jiang, B. J.; Fu, W.; Fu, H. G. Chemical Journal of Chinese Universities 2007, 28, 415. [杨立滨, 井立强, 李姝丹, 蒋保江, 付薇, 付宏刚. 高等学校化学学报, 2007, 28, 415.]

    32. [32]

      (32) Xu, Y. L. Fundamentals of Oxide and Compound Semiconductor; Xidian University Press: Xian, 1991. [徐毓龙. 氧化物与化合物半导体基础. 西安: 西安电子科技大学出版社, 1991.]

    33. [33]

      (33) Lee, K. H.; Ishizaki, A.; Kim, S.W.; Ohta, H.; Koumoto, K. Journal of Applied Physics 2007, 102, 033702.


  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    5. [5]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    6. [6]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    7. [7]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

    8. [8]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    9. [9]

      Junjie TANGYunting ZHANGZhengjiang LIUJiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420

    10. [10]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    11. [11]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    14. [14]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    15. [15]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    16. [16]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    17. [17]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    18. [18]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    20. [20]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(301)
  • Abstract views(553)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return