Citation:
DING Dan-Dan, XU Xuan, WU Zi-Wen, ZHOU Wo-Hua, CHEN Rong, XU Zhi-Guang. Coordination Structures of Metal String Complexes (n, m)[Cr3(PhPyF)4Cl2](n=2, 3, 4; m=2, 1, 0) and Relationship with External Electric Field[J]. Acta Physico-Chimica Sinica,
;2015, 31(7): 1323-1330.
doi:
10.3866/PKU.WHXB201505143
-
The coordination structures of metal string complexes (n, m)[Cr3(PhPyF)4Cl2] (HPhPyF=N, N'- phenylpyridylformamidine; n=2, 3, 4; m=2, 1, 0) with potential applications as molecular wires have been investigated using the density functional theory BP86 method by considering the effects of an external electric field (EF). Herein, n and m represent the number of benzene rings on the left and right in the PhPyF- ligand, respectively. The results show that: (1) under zero field, the three kinds of coordination modes ((2, 2), (3, 1), (4, 0)) of the four PhPyF- ligands are close in energy, which indicates that they are competitive conformations. The (2, 2) coordination mode is the most stable one. The Cl axial ligands on the two sides of (4, 0) can coordinate to Cr atoms, indicating that these two axial ligands can combine with electrodes. Moreover, the Cl4― Cr1 bond is stronger than Cl5―Cr3, different from (4, 0) [CuCuM(npa)4Cl] [PF6] (M=Pd, Pt; 2- naphthyridylphenylamine) in which the axial ligand Cl close to benzene cannot coordinate to metal atom M. (2) There is a 3-center-3-electron delocalization σ bond in the Cr36 + chain for (2, 2), (3, 1), and (4, 0), but the delocalization gradually weakens. The polarity from Cl4 to Cl5 is stronger as the coordination mode of four PhPyF- ligands becomes more consistent. (3) The geometry and electronic structure of the investigated complexes change regularly under the electric field. Because the electron transfer direction of (3, 1) and (4, 0) is the same as its molecular polarity, the bond length, spin density, charge and energy gap are more sensitive to -Z electric field. Therefore, the -Z elelctric field is beneficial to the conductivity of the molecules. Moreover, the sensitivity of the structures to electric field increases with polarity.
-
-
-
[1]
(1) Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Pascual, I. J. Am. Chem. Soc. 1997, 119 (42), 10223. doi: 10.1021/ja971998+
-
[2]
(2) Berry, J. F.; Cotton, F. A.; Lu, T.; Murillo, C. A.; Roberts, B. K.; Wang, X. J. Am. Chem. Soc. 2004, 126 (22), 7082. doi: 10.1021/ja049055h
-
[3]
(3) Cotton, F. A.; Lei, P.; Murillo, C. A. Inorg. Chem. Acta 2003, 349, 173. doi: 10.1016/S0020-1693(03)00093-8
-
[4]
(4) Ismayilov, R. H.; Wang, W. Z.; Lee, G. H.; Wang, R. R.; Liu, I. P. C.; Yeh, C. Y.; Peng, S. M. Dalton Trans. 2007, No. 27, 2898.
-
[5]
(5) Cotton, F. A.; Daniels, L. M.; Lei, P.; Murillo, C. A.; Wang, X. Inorg. Chem. 2001, 40 (12), 2778.
-
[6]
(6) Yang, E. C.; Cheng, M. C.; Tsai, M. S.; Peng, S. M. Chem. Soc. Chem. Commun. 1994, No. 20, 2377.
-
[7]
(7) Aduldecha, S.; Hathaway, B. Chem. Soc. Dalton Trans. 1991, No. 4, 993.
-
[8]
(8) Alaná Pinkerton, A. Chem. Soc. Chem. Commun. 1991, No. 2, 84.
-
[9]
(9) Sheu, J. T.; Lin, C. C.; Chao, I.; Wang, C. C.; Peng, S. M. Chem. Commun. 1996, No. 3, 315.
-
[10]
(10) Nippe, M.; Berry, J. F. J. Am. Chem. Soc. 2007, 129 (42), 12684. doi: 10.1021/ja076337j
-
[11]
(11) Nippe, M.; Turov, Y.; Berry, J. F. Inorg. Chem. 2011, 50 (21), 10592. doi: 10.1021/ic2011309
-
[12]
(12) Clerac, R.; Cotton, F. A.; Daniels, L. M.; Dunbar, K. R.; Murillo, C. A. Inorg. Chem. 2000, 39 (4), 752. doi: 10.1021/ic991022t
-
[13]
(13) Liu, I. P. C.; Chen, C. H.; Chen, C. F.; Lee, G. H.; Peng, S. M. Chem. Commun. 2009, No. 5, 577.
-
[14]
(14) Lin, S. Y.; Chen, I.W. P.; Chen, C. H.; Hsieh, M. H.; Yeh, C. Y.; Lin, T.W.; Peng, S. M. J. Chem. Phys. B 2004, 108 (3), 959. doi: 10.1021/jp035415w
-
[15]
(15) Tsai, T.W.; Huang, Q. R.; Peng, S. M.; Jin, B. Y. J. Chem. Phys. C 2010, 114 (8), 3641. doi: 10.1021/jp907893q
-
[16]
(16) Clerac, R.; Cotton, F. A.; Daniels, L. M.; Dunbar, K. R.; Murillo, C. A.; Pascual, I. Inorg. Chem. 2000, 39 (4), 748. doi: 10.1021/ic990793u
-
[17]
(17) Cotton, F. A.; Lei, P.; Murillo, C. A.; Wang, L. S. Inorg. Chem. Acta 2003, 349, 165. doi: 10.1016/S0020-1693(03)00092-6
-
[18]
(18) Ye, Y. F.; Zhang, M. L.; Zhao, J.W. J. Mol. Struct. –Theochem 2007, 822 (1-3), 12. doi: 10.1016/j.theochem.2007.07.007
-
[19]
(19) Li, Y.W.; Zhang, Y.; Yi, G. P.; Zhao, J.W. Chem. J. Chin. Univ. 2006, 27 (2), 292. [李延伟, 章岩, 尹鸽平, 赵健伟. 高等学校化学学报, 2006, 27 (2), 292.]
-
[20]
(20) Glendening, E. D.; Reed, A. E. Gaussain 03, Version B.04; Gaussian Inc.: Pittsburgh, PA, 2005.
-
[21]
(21) El-Hendawy, M. M.; El-Nahas, A. M.; Awad, M. K. J. Chem. Phys. C 2010, 114 (49), 21728. doi: 10.1021/jp107014g
-
[22]
(22) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al.; Gaussian 03, Version B.04[CP]; Gaussian Inc.: Pittsburgh, PA, 2003.
-
[23]
(23) Zhang, X. H.; Li, Q.; Xie, Y. M. Dalton Trans. 2008, No. 35, 4805.
-
[24]
(24) Hsiao, C. J.; Lai, S. H.; Chen, I. C.; Wang, W. Z.; Peng, S. M. J. Chem. Phys. A 2008, 112 (51), 13528. doi: 10.1021/jp8081326
-
[25]
(25) Rohmer, M. M.; Bénard, M. J. Clust. Sci. 2002, 13 (3), 333. doi: 10.1023/A:1020546915168
-
[26]
(26) Tan, Y.; Huang, X.; Xu, X.; Xu, Z. G. Chem. J. Chin. Univ. 2012, 33, 1278. [谭莹, 黄晓, 许旋, 徐志广. 高等学校化学学报, 2012, 33, 1278.]
-
[27]
(27) Huang, Y.; Huang, X.; Xu, X. Acta Phys. -Chim. Sin. 2013, 29 (6), 1225. [黄燕, 黄晓, 许旋. 物理化学学报, 2013, 29 (6), 1225.] doi: 10.3866/PKU.WHXB201303181
-
[28]
(28) Luo, K. G.; Tan, Y.; Xu, X.; Xu, Z. G. Inorg. Chim. Acta 2014, 421, 310. doi: 10.1016/j.ica.2014.06.003
-
[29]
(29) Huang, X.; Tan, Y.; Xu, X.; Xu, Z. G. Acta Chim. Sin. 2012, 70 (18), 1979. [黄晓, 谭莹, 许旋, 徐志广. 化学学报, 2012, 70 (18), 1979.] doi: 10.6023/A12030051
-
[30]
(30) Georgiev, V. P.; McGrady, J. E. J. Am. Chem. Soc. 2011, 133 (32), 12590. doi: 10.1021/ja2028475
-
[1]
-
-
-
[1]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[2]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[3]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[4]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[5]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[6]
Tongqi Ye , Yanqing Wang , Qi Wang , Huaiping Cong , Xianghua Kong , Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128
-
[7]
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
-
[8]
Xiaochen Zhang , Fei Yu , Jie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026
-
[9]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[10]
Wenke ZHENG , Ce LIU , Wei CHEN , Hongshan KE , Fanlong ZENG , Yibo LEI , Anyang LI , Wenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095
-
[11]
Yanglin Jiang , Mingqing Chen , Min Liang , Yige Yao , Yan Zhang , Peng Wang , Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027
-
[12]
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
-
[13]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[14]
Zhengkun QIN , Zicong PAN , Hui TIAN , Wanyi ZHANG , Mingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429
-
[15]
Fanpeng Meng , Fei Zhao , Jingkai Lin , Jinsheng Zhao , Huayang Zhang , Shaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095
-
[16]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014
-
[17]
Keweiyang Zhang , Zihan Fan , Liyuan Xiao , Haitao Long , Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084
-
[18]
Ming Li , Zhaoyin Li , Mengzhu Liu , Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085
-
[19]
Quanguo Zhai , Peng Zhang , Wenyu Yuan , Ying Wang , Shu'ni Li , Mancheng Hu , Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065
-
[20]
Wen Jiang , Jieli Lin , Zhongshu Li . 低配位含磷官能团的研究进展. University Chemistry, 2025, 40(8): 138-151. doi: 10.12461/PKU.DXHX202409144
-
[1]
Metrics
- PDF Downloads(278)
- Abstract views(521)
- HTML views(2)