Citation:
TONG La-Ga, LIU Jin-Yan, WANG Cen-Chen, RONG Hua, LI Wei. Preparation of Micro/Nano ZnO Pompons and Their Catalytic Activity for the Solar Degradation of Organic Dyes[J]. Acta Physico-Chimica Sinica,
;2015, 31(8): 1615-1620.
doi:
10.3866/PKU.WHXB201505141
-
A novel, high-yielding synthesis of micro/nano ZnO pompons using glutamic acid fluoborate (GluBF4) ionic liquid is reported. The precursor was prepared with zinc acetatedihydrate [Zn(Ac)2·2H2O] and sodium hydroxide (molar ratio = 1:6) as starting materials in an aqueous solution of the GluBF4 ionic liquid at room temperature, which was then heated by microwave to form nano-ZnO powder. The ZnO pompons were characterized using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), specific Brunauer-Emmett-Teller (BET) surface area method, and energy dispersive spectrometry (EDS). The product displayed a hexa nal wurtzite structure. The pompon diameter was determined to be 20.4 nm, with a pompon specific surface area of 28.3 m2·g-1. A possible mechanism for the formation of the nano-ZnO pompons is discussed. The ZnO pompons displayed high photocatalytic reactivity and photostability under sunlight. Aqueous solutions of methyl orange (MO) and methyl violet (MV) containing the ZnO pompons were exposed to sunlight and the decolorization rates were determined by monitoring the drop in color intensity. After 5 h, the solutions reached 74.3% and 96.9% degradation, respectively. The total organic carbon (TOC) content decreased as the photodegradation process occurred. The morphology, color, and weight of the ZnO pompons remained unchanged even after being reused five times.
-
-
-
[1]
(1) Wu, J. J.; Liu, S. C. Adv. Mater. 2002, 14, 215.
-
[2]
(2) Zhu, Z. F.; Yang, D.; Liu, H. Adv. Powder Technol. 2011, 22, 493. doi: 10.1016/j.apt.2010.07.002
-
[3]
(3) Krishnakunar, T.; Jayaprakash, R.; Pinna, N.; Singh, V. N.; Mehta, B. R.; Phani, A. R. Mater. Lett. 2009, 63, 242. doi: 10.1016/j.matlet.2008.10.008
-
[4]
(4) Zhang, L. X.; Zhao, J. H.; Zheng, J. F.; Li, L.; Zhu, Z. P. Appl. Surf. Sci. 2011, 258, 711. doi: 10.1016/j.apsusc.2011.07.116
-
[5]
(5) Hamedani, N. F.; Mahjoub, A. R.; Khodadadi, A. A.; Mortazavi, Y. Sensors Actuators B 2011, 156, 737. doi: 10.1016/j.snb. 2011.02.028
-
[6]
(6) Li, X. Q.; Fan, Q. F.; Li, G. L.; Huang, Y. H.; Gao, Z.; Fan, X. M.; Zhang, C. L.; Zhou, Z. W. Acta Phys. -Chim. Sin. 2015, 31 (4), 783. [李湘奇, 范庆飞, 李广立, 黄瑶翰, 高照, 范希梅, 张朝良, 周祚万. 物理化学学报, 2015, 31 (4), 783.] doi: 10.3866/PKU.WHXB201502062
-
[7]
(7) Du, H. Y.; Wang, J.; Qiao, Q.; Sun, Y. H.; Shao, Q.; Li, X. G. Acta Phys. -Chim. Sin. 2015, 31 (4), 800. [杜海英, 王兢, 乔俏, 孙炎辉, 邵强, 李晓干. 物理化学学报, 2015, 31 (4), 800.] doi: 10.3866/PKU.WHXB201501283
-
[8]
(8) Han, X. G.; He, H. Z.; Kuang, Q.; Zhou, X.; Zhang, X. H.; Xu, T.; Xie, Z. X.; Zheng, L. S. J. Phys. Chem. C 2009, 113, 584. doi: 10.1021/jp808233e
-
[9]
(9) Huang, J. F.; Xia, C. K.; Cao, L.Y.; Zeng, X. R. Mater. Sci. Eng. B 2008, 150, 187. doi: 10.1016/j.mseb.2008.05.014
-
[10]
(10) Venkatesha, T. G.; Nayaka, Y. A.; Viswanatha, R.; Vidyasagar, C. C.; Chethana, B. K. Powder Technol. 2012, 225, 232. doi: 10.1016/j.powtec.2012.04.021
-
[11]
(11) Shi, R. X.; Yang, P.; Dong, X. B.; Ma, Q.; Zhang, A. Y. Appl. Surf. Sci. 2013, 264, 162. doi: 10.1016/j.apsusc.2012.09.164
-
[12]
(12) Wang, W. W.; Zhu, Y. J. Inorg. Chem. Commun. 2004, 7, 1003. doi: 10.1016/j.inoche.2004.06.014
-
[13]
(13) Hou, X. M.; Zhou, F.; Sun, Y. B.; Liu, W. M. Mater. Lett. 2007, 61, 1789. doi: 10.1016/j.matlet.2006.07.133
-
[14]
(14) Movahedi, M.; Kowsari, E.; Mahjoub, A. R.; Yavari, I. Mater. Lett. 2008, 62, 3856. doi: 10.1016/j.matlet.2008.05.002
-
[15]
(15) harshadi, E. K.; Ding, Y. L.; Nancarrow, P. J. Phys. Chem. Solids 2008, 69, 2057. doi: 10.1016/j.jpcs.2008.03.002
-
[16]
(16) Wang, L.; Xu, S. Z.; Li, H. J.; Chang, L. X.; Su, Z.; Zeng, M. H.; Wang, L. N.; Huang, Y. N. J. Solid State Chem. 2011, 184, 720. doi: 10.1016/j.jssc.2011.01.032
-
[17]
(17) Chen, C. Y.; Li, Q.; Nie, M.; Lin, H.; Li, Y.; Wu, H. J.; Wang, Y. Y. Mater. Res. Bull. 2011, 46, 888. doi: 10.1016/j.materresbull. 2011.02.017
-
[18]
(18) Sanes, J.; Carrion, F. J.; Bermudez, M. D. Appl. Surf. Sci. 2009, 255, 4859. doi: 10.1016/j.apsusc.2008.12.023
-
[19]
(19) Lee, K. M.; Chiu, W. H.; Hsu, C. Y.; Cheng, H. M.; Lee, C. H.; Wu, C. G. J. Power Sources 2012, 216, 330. doi: 10.1016/j.jpowsour.2012.05.079
-
[20]
(20) Min, Y. L.; Zhang, K.; Chen, L. H.; Chen, Y. C.; Zhang, Y. G. Diamond & Related Materials 2012, 26, 32. doi: 10.1016/j.diamond.2012.04.003
-
[21]
(21) Sabbaghan, M.; Shahvelayati, A. S.; Bashtani, S. E. Solid State Sci. 2012, 14, 1191. doi: 10.1016/j.solidstatesciences. 2012.05.034
-
[22]
(22) Tong, L.; Liu, Y.; Rong, H.; ng, L. Mater Lett. 2013, 112, 5. doi: 10.1016/j.matlet.2013.08.119
-
[23]
(23) Rong, H.; Li, W.; Chen, Z. Y.; Wu, X. M. J. Phys. Chem. B 2008, 112, 1451. doi: 10.1021/jp0774591
-
[24]
(24) Lu, F.; Chen, Y. N.; Liu, N.; Cao, Y. Z.; Feng, L. Chem. J. Chin. Univ. 2014, 35 (2), 368. [卢飞, 陈雨宁, 刘娜, 曹莹泽, 冯琳. 高等学校化学学报, 2014, 35 (2), 368.]
-
[25]
(25) Yu, D. Z.; Cai, R. X.; Liu, Z. H. Spectrochim. Acta Part A 2004, 60, 1617. doi: 10.1016/j.saa.2003.09.003
-
[26]
(26) Daneshvar, N.; Salari, D.; Khatee, A. R. J. Photochem. Photobiol. A 2004, 162 (2/3), 317.
-
[27]
(27) Su, B. T.; Hu, C. L.; Zuo, X. W.; Lei, Z. Q. Chin. J. Inorg. Chem. 2010, 26 (1), 96. [苏碧桃, 胡常林, 左显维, 雷自强. 无机化学学报, 2010, 26 (1), 96.]
-
[28]
(28) Razali, R.; Zak, A. K.; Majid, W. H. A.; Darroudi, M. Ceram. Int. 2011, 37, 3657. doi: 10.1016/j.ceramint.2011.06.026
-
[1]
-
-
-
[1]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[2]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[3]
Xinxin YU , Yongxing LIU , Xiaohong YI , Miao CHANG , Fei WANG , Peng WANG , Chongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438
-
[4]
Yuanqing Wang , Yusong Pan , Hongwu Zhu , Yanlei Xiang , Rong Han , Run Huang , Chao Du , Chengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050
-
[5]
Xinzhe HUANG , Lihui XU , Yue YANG , Liming WANG , Zhangyong LIU , Zhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212
-
[6]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014
-
[7]
Hong CAI , Jiewen WU , Jingyun LI , Lixian CHEN , Siqi XIAO , Dan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382
-
[8]
Ruiying WANG , Hui WANG , Fenglan CHAI , Zhinan ZUO , Benlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052
-
[9]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044
-
[10]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
-
[11]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[12]
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052
-
[13]
Tong WANG , Qinyue ZHONG , Qiong HUANG , Weimin GUO , Xinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011
-
[14]
Jimin HOU , Mengyang LI , Chunhua GONG , Shaozhuang ZHANG , Caihong ZHAN , Hao XU , Jingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348
-
[15]
Zhinan GUO , Junli WANG , Qiang ZHAO , Zhifang JIA , Zuopeng LI , Kewei WANG , Yong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403
-
[16]
Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148
-
[17]
Shuang Cao , Bo Zhong , Chuanbiao Bie , Bei Cheng , Feiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016
-
[18]
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
-
[19]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014
-
[20]
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.
-
[1]
Metrics
- PDF Downloads(417)
- Abstract views(688)
- HTML views(47)