Citation:
HUA Shu-Gui, JIN Hao, OUYANG Yong-Zhong. Contribution of Non-Covalent Interactions to the Gas-Phase Stability of the Double-Helix of B-DNA: A Density Functional Theory Study with GEBF Approach[J]. Acta Physico-Chimica Sinica,
;2015, 31(7): 1309-1314.
doi:
10.3866/PKU.WHXB201505111
-
We employed the generalized energy-based fragmentation (GEBF) approach to investigate the gas-phase structures of B-DNA double-helices up to 10 base pairs at several theoretical levels. By comparing the results obtained using the M06-2X functional and other methods (including the B3LYP, B3LYP-vdW, and TPSS functionals), we found that the absence of stacking interactions could lead to the enlargement of the vertical distance between adjacent bases. The magnitude of this enlargement of the vertical distance quickly decreases as the length of the double-helix increases. The gas-phase stabilization of the double-helical structure of B-DNA is a cooperative effect, in which hydrogen bonding plays a more important role than stacking interaction does up to 10 base pairs.
-
-
-
[1]
(1) Šponer, J.; Riley, K. E.; Hobza, P. Phys. Chem. Chem. Phys. 2008, 10, 2595. doi: 10.1039/b719370j
-
[2]
(2) Gil, A.; Branchadell, V.; Bertran, J.; Oliva, A. J. Phys. Chem. B 2009, 113, 4907. doi: 10.1021/jp809737c
-
[3]
(3) Banáš, P.; Mládek, A.; Otyepka, M.; Zgarbová, M.; Jure?ka, P.; Svozil, D.; Lankaš, F.; Šponer, J. J. Chem. Theory Comput. 2012, 8, 2448. doi: 10.1021/ct3001238
-
[4]
(4) Sedlák, R.; Jure?ka, P.; Hobza, P. J. Chem. Phys. 2007, 127, 075104. doi: 10.1063/1.2759207
-
[5]
(5) Pitoňák, M.; Neogrády, P.; Hobza, P. Phys. Chem. Chem. Phys. 2010, 12, 1369. doi: 10.1039/B919354E
-
[6]
(6) Riley, K. E.; Pionak, M.; Jurecka, P.; Hobza, P. Chem. Rev. 2010, 110, 5023. doi: 10.1021/cr1000173
-
[7]
(7) Zhang, Y.; Ma, N.; Wang, W. J. Theor. Comput. Chem. 2012, 11, 1165. doi: 10.1142/S0219633612500770
-
[8]
(8) Jones, G. J.; Robertazzi, A.; Platts, J. A. J. Phys. Chem. B 2013, 117, 3315. doi: 10.1021/jp400345s
-
[9]
(9) Wilson, K. A.; Kellie, J. L.; Wetmore, S. D. Nucleic Acids Res. 2014, 42, 6726. doi: 10.1093/nar/gku269
-
[10]
(10) Elstner, M.; Hobza, P.; Frauenheim, T.; Suhai, S.; Kaxiras, E. J. Chem. Phys. 2001, 114, 5149. doi: 10.1063/1.1329889
-
[11]
(11) ?erný, J.; Kabelá?, M.; Hobza, P. J. Am. Chem. Soc. 2008, 130, 16055. doi: 10.1021/ja805428q
-
[12]
(12) Cooper, V. R.; Thonhauser, T.; Langreth, D. C. J. Chem. Phys. 2008, 128, 204102. doi: 10.1063/1.2924133
-
[13]
(13) Cooper, V. R.; Thonhauser, T.; Puzder, A.; Schröder, E.; Lundqvist, B. I.; Langreth, D. C. J. Am. Chem. Soc. 2008, 130, 1305.
-
[14]
(14) Šponer, J.; Mládek, A.; Špa?ková, N.; Cang, X.; Cheatham, T.; Grimme, S. J. Am. Chem. Soc. 2013, 135, 9785. doi: 10.1021/ja402525c
-
[15]
(15) Barone, G.; Guerra, C.; Bickelhaupt, F. ChemistryOpen 2013, 2, 186. doi: 10.1002/open.v2.5/6
-
[16]
(16) Grunenberg, J.; Barone, G.; Spinello, A. J. Chem. Theory Comput. 2014, 10, 2901. doi: 10.1021/ct500329f
-
[17]
(17) Hesselmann, A.; Jansen, G.; Schütz, M. J. Am. Chem. Soc. 2006, 128, 11730. doi: 10.1021/ja0633363
-
[18]
(18) Fiethen, A.; Jansen, G.; Hesselmann, A.; Schütz, M. J. Am. Chem. Soc. 2008, 130, 1802. doi: 10.1021/ja076781m
-
[19]
(19) Koby?ecka, M.; Leszczynski, J.; Rak, J. J. Chem. Phys. 2009, 131, 085103. doi: 10.1063/1.3204939
-
[20]
(20) Churchill, C. D. M.; Wetmore, S. D. J. Phys. Chem. B 2009, 113, 16046. doi: 10.1021/jp907887y
-
[21]
(21) Svozil, D.; Hobza, P.; Šponer, J. J. Phys. Chem. B 2010, 114, 1191.
-
[22]
(22) Sharma, P.; Lait, L. A.; Wetmore, S. D. Phys. Chem. Chem. Phys. 2013, 15, 2435. doi: 10.1039/c2cp43910g
-
[23]
(23) Sharma, P.; Lait, L. A.; Wetmore, S. D. Phys. Chem. Chem. Phys. 2013, 15, 15538. doi: 10.1039/c3cp52656a
-
[24]
(24) Šponer, J.; Florián, J.; Ng, H. L.; Šponer, J. E.; Špacková, N. Nucleic Acids Research 2000, 28, 4893. doi: 10.1093/nar/28.24.4893
-
[25]
(25) Yakovchuk, P.; Protozanova, E.; Frank-Kamenetskii, M. D. Nucleic Acids Research 2006, 34, 564. doi: 10.1093/nar/gkj454
-
[26]
(26) Vijayaraghavan, R.; Iz rodin, A.; Ganesh, V.; Surianarayanan, M.; MacFarlane, D. R. Angew. Chem. Int. Edit. 2010, 49, 1631. doi: 10.1002/anie.200906610
-
[27]
(27) Li, W.; Li, S.; Jiang, Y. J. Phys. Chem. A 2007, 111, 2193. doi: 10.1021/jp067721q
-
[28]
(28) Deev, V.; Collins, M. A. J. Chem. Phys. 2005, 122, 154102. doi: 10.1063/1.1879792
-
[29]
(29) Collins, M. A.; Deev, V. J. Chem. Phys. 2006, 125, 104104. doi: 10.1063/1.2347710
-
[30]
(30) Addicoat, M. A.; Collins, M. A. J. Chem. Phys. 2009, 131, 104103. doi: 10.1063/1.3222639
-
[31]
(31) Ganesh, V.; Dongare, R. K.; Balanarayan, P.; Gadre, S. R. J. Chem. Phys. 2006, 125, 104109. doi: 10.1063/1.2339019
-
[32]
(32) Deshmukh, M. M.; Gadre, S. R. J. Phys. Chem. A 2009, 113, 7927.
-
[33]
(33) Ahalkar, A. P.; Katouda, M.; Gadre, S. R.; Nagase, S. J. Comput. Chem. 2010, 31, 2405.
-
[34]
(34) Bettens, R. P. A.; Lee, A. M. J. Phys. Chem. A 2006, 110, 8777.
-
[35]
(35) Hua, W.; Fang, T.; Li, W.; Yu, J.; Li, S. J. Phys. Chem. A 2008, 112, 10864. doi: 10.1021/jp8026385
-
[36]
(36) Dong, H.; Hua, S.; Li, S. J. Phys. Chem. A 2009, 113, 1335. doi: 10.1021/jp8071525
-
[37]
(37) Hua, S.; Hua, W.; Li, S. J. Phys. Chem. A 2010, 114, 8126.
-
[38]
(38) Li, W. J. Chem. Phys. 2013, 138, 9.
-
[39]
(39) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.01; Gaussian Inc.:Wallingford, CT, 2009.
-
[40]
(40) Li, S.; Li, W.; Fang, T.; Ma, J.; Hua, W.; Hua, S.; Jiang, Y. Low- Scaling Quantum Chemistry (LSQC), Version 2.2; Nanjing University: Nanjing, 2012.
-
[41]
(41) http://www.rcsb.org/.
-
[42]
(42) Wu, Q.; Yang, W. T. J. Chem. Phys. 2002, 116, 515. doi: 10.1063/1.1424928
-
[43]
(43) Rapacioli, M.; Spiegelman, F.; Talbi, D.; Mineva, T.; ursot, A.; Heine, T.; Seifert, G. J. Chem. Phys. 2009, 130, 244304. doi: 10.1063/1.3152882
-
[1]
-
-
-
[1]
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
-
[2]
Xue Wu , Yupeng Liu , Bingzhe Wang , Lingyun Li , Zhenjian Li , Qingcheng Wang , Quansheng Cheng , Guichuan Xing , Songnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109
-
[3]
Zimo Yang , Yan Tong , Yongbo Liu , Qianlong Liu , Zhihao Ni , Yuna He , Yu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577
-
[4]
Xiongbo Song , Jinwen Xiao , Juan Wu , Li Sun , Long Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844
-
[5]
Yinglian LI , Chengcheng ZHANG , Xinyu ZHANG , Xinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087
-
[6]
Yanfen PENG , Xinyue WANG , Tianbao LIU , Xiaoshuo WU , Yujing WEI . Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018
-
[7]
Dong Xiang , Kunzhen Li , Kanghua Miao , Ran Long , Yujie Xiong , Xiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027
-
[8]
Yuanyuan Ping , Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092
-
[9]
Shuang Meng , Haixin Long , Zhou Zhou , Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008
-
[10]
Xingyuan Lu , Yutao Yao , Junjing Gu , Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074
-
[11]
Xinyu ZENG , Guhua TANG , Jianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374
-
[12]
Junqiao Zhuo , Xinchen Huang , Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100
-
[13]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043
-
[14]
Yuanqing Wang , Yusong Pan , Hongwu Zhu , Yanlei Xiang , Rong Han , Run Huang , Chao Du , Chengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050
-
[15]
Zhongxin YU , Wei SONG , Yang LIU , Yuxue DING , Fanhao MENG , Shuju WANG , Lixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304
-
[16]
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
-
[17]
Chengyi Xiao , Xiaoli Sun , Chen Zhang , Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069
-
[18]
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
-
[19]
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
-
[20]
Yuxin CHEN , Yanni LING , Yuqing YAO , Keyi WANG , Linna LI , Xin ZHANG , Qin WANG , Hongdao LI , Wenmin WANG . Construction, structures, and interaction with DNA of two SmⅢ4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258
-
[1]
Metrics
- PDF Downloads(327)
- Abstract views(513)
- HTML views(11)