Citation:
XU Zhen, CHEN Yu, ZHANG Zhao, ZHANG Jian-Qing. Progress of Research on Underpotential Deposition—— I. Theory of Underpotential Deposition[J]. Acta Physico-Chimica Sinica,
;2015, 31(7): 1219-1230.
doi:
10.3866/PKU.WHXB201505071
-
Underpotential deposition (upd) has been a hotspot in the field of electrochemical research throughout the years owing to its significant theoretical and applied research value. Theoretical research on upd primarily centers around the relations and rules of interaction among deposition substrates, deposition species, and anions (or other organic additives) during upd process. In this paper, the developments in theoretical research in recent years on upd on both the local and international levels are systematically summarized mainly from two viewpoints, namely, thermodynamics and kinetics. With regard to the thermodynamics of upd process, introductory comments and mathematical formulas are summarized from four aspects, i.e., underpotential shift (ΔEupd), electrosorption valency (γ), influence of temperature, and electrochemical adsorption isotherms. The applications and analyses of those related mathematical formulas are also presented in detail. In terms of the kinetics of upd process, nucleation and growth phenomena are mainly presented. We summarize the relevant mathematical models, and additionally introduce research studies on the characteristics of upd kinetics based on these mathematical models. Furthermore, this paper presents an outline of computational chemistry methods and application achievements concerning upd research. Finally, the theoretical research status of upd is presented, giving an overall view of the development trend.
-
-
-
[1]
(1) Pangarov, N. Electrochim. Acta 1983, 28 (6), 763. doi: 10.1016/0013-4686(83)85145-7
-
[2]
(2) Huang, M. H.; Henry, J. B.; Fortgang, P.; Henig, J.; Plumeré, N.; Bandarenka, A. S. RSC Adv. 2012, 2 (29), 10994. doi: 10.1039/c2ra21558f
-
[3]
(3) Hevesy, G. V. Physik. Z. 1912, 13, 715.
-
[4]
(4) Xing, X. K.; Bae, I. T.; Scherson, D. A. Electrochim. Acta 1995, 40 (1), 29. doi: 10.1016/0013-4686(94)00251-U
-
[5]
(5) Zhu, W.; Yang, J. Y.; Zhou, D. X.; Bao, S. Q.; Fan, X. A.; Duan, X. K. Electrochim. Acta 2007, 52 (11), 3660. doi: 10.1016/j.electacta.2006.10.028
-
[6]
(6) Kondo, T.; Takakusagi, S.; Uosaki, K. Electrochem. Commun. 2009, 11 (4), 804. doi: 10.1016/j.elecom.2009.01.036
-
[7]
(7) Kirowa-Eisner, E.; Bonfil, Y.; Tzur, D.; Gileadi, E. J. Electroanal. Chem. 2003, 552, 171. doi: 10.1016/S0022-0728 (03)00181-5
-
[8]
(8) Paddon, C. A.; Compton, R. G. J. Phys. Chem. C 2007, 111 (26), 9016. doi: 10.1021/jp073304h
-
[9]
(9) Fu, Y. C.; Yan, J.W.; Wang, Y.; Tian, J. H.; Zhang, H. M.; Xie, Z. X.; Mao, B.W. J. Phys. Chem. C 2007, 111 (28), 10467. doi: 10.1021/jp0711621
-
[10]
(10) Gasparotto, L. H. S.; Borisenko, N.; Bocchi, N.; El Abedin, S. Z.; Endres, F. Phys. Chem. Chem. Phys. 2009, 11 (47), 11140. doi: 10.1039/b916809e
-
[11]
(11) Rosário, A. V.; Santos, M. C.; Mascaro, L. H.; Bulhões, L. O. S.; Pereira, E. C. Thin Solid Films 2010, 518 (10), 2669. doi: 10.1016/j.tsf.2009.08.035
-
[12]
(12) Bouamrane, F.; Tadjeddine, A.; Tenne, R.; Butler, J. E.; Kalish, R.; Levy-Clement, C. J. Phys. Chem. B 1998, 102 (1), 134. doi: 10.1021/jp971516g
-
[13]
(13) Su, X.; Zhan, X.; Hinds, B. J. J. Mater. Chem. 2012, 22 (16), 7979. doi: 10.1039/c2jm15395e
-
[14]
(14) Lastraioli, E.; Loglio, F.; Innocenti, M.; Carlà, F.; Foresti, M. L. ECS Trans. 2010, 25 (34), 17. doi: 10.1149/1.3335488
-
[15]
(15) Zhang, X.; Shi, X. Z.; Ye, W. C.; Ma, C. L.; Wang, C. M. Appl. Phys. A: Mater. Sci. Process. 2009, 94 (2), 381. doi: 10.1007/s00339-008-4815-5
-
[16]
(16) Biçer, M.; Ayd1n, A. O.; ?i?man, ?. Electrochim. Acta 2010, 55 (11), 3749. doi: 10.1016/j.electacta.2010.02.015
-
[17]
(17) Loglio, F.; Innocenti, M.; Jarek, A.; Caporali, S.; Pasquini, I.; Foresti, M. L. J. Electroanal. Chem. 2010, 638 (1), 15. doi: 10.1016/j.jelechem.2009.10.027
-
[18]
(18) Alanyal?o?lu, M.; Bayrakçeken, F.; Demir, Ü. Electrochim. Acta 2009, 54 (26), 6554. doi: 10.1016/j.electacta.2009.06.056
-
[19]
(19) Gao, L. X.; Wang, L. N.; Qi, T.; Yu, J. Acta Phys. -Chim. Sin. 2012, 28 (1), 111. [高丽霞, 王丽娜, 齐涛, 余江. 物理化学学报, 2012, 28 (1), 111.] doi: 10.3866/PKU.WHXB201228111
-
[20]
(20) Li, M.; Sun, T. T.; Liu, B.; Han, W.; Sun, Y.; Zhang, M. L. Acta Phys. -Chim. Sin. 2015, 31 (2), 309. [李梅, 孙婷婷, 刘斌, 韩伟, 孙杨, 张密林. 物理化学学报, 2015, 31 (2), 309.] doi: 10.3866/PKU.WHXB201412182
-
[21]
(21) Xue, Y.; Zhou, Z. P.; Yan, Y. D.; Zhang, M. L.; Li, X.; Ji, D. B.; Han, W.; Zhang, M. Acta Phys. -Chim. Sin. 2014, 30 (9), 1674. [薛云, 周志萍, 颜永得, 张密林, 李星, 纪德彬, 韩伟, 张萌. 物理化学学报, 2014, 30 (9), 1674.] doi: 10.3866/PKU.WHXB201407022
-
[22]
(22) Nicic, I.; Liang, J.; Cammarata, V.; Alanyalioglu, M.; Demir, U.; Shannon, C. J. Phys. Chem. B 2002, 106 (47), 12247. doi: 10.1021/jp026625w
-
[23]
(23) Hölzle, M. H.; Retter, U.; Kolb, D. M. J. Electroanal. Chem. 1994, 371 (1-2), 101. doi: 10.1016/0022-0728(93)03235-H
-
[24]
(24) Sibert, E.; Wang, L.; De Santis, M.; Soldo-Olivier, Y. Electrochim. Acta 2014, 135, 594. doi: 10.1016/j.electacta.2014.04.168
-
[25]
(25) Lamy-Pitara, E.; Elouazzani-Benhima, L.; Barbier, J.; Cahoreau, M.; Caisso, J. J. Electroanal. Chem. 1994, 372 (1-2), 233. doi: 10.1016/0022-0728(93)03256-O
-
[26]
(26) Garcia, S. G.; Salinas, D. R.; Staikov, G. Surf. Sci. 2005, 576 (1-3), 9. doi: 10.1016/j.susc.2004.11.037
-
[27]
(27) Hepel, M.; Kanige, K.; Bruckenstein, S. Langmuir 1990, 6 (6), 1063. doi: 10.1021/la00096a006
-
[28]
(28) Sackmann, J.; Bunk, A.; Pötzschke, R. T.; Staikov, G.; Lorenz, W. J. Electrochim. Acta 1998, 43 (19-20), 2863. doi: 10.1016/S0013-4686(98)00027-9
-
[29]
(29) Mendoza-Huizar, L. H.; Robles, J.; Palomar - Pardavé, M. J. Electroanal. Chem. 2002, 521 (1-2), 95. doi: 10.1016/S0022-0728(02)00659-9
-
[30]
(30) Mendoza-Huizar, L. H.; Robles, J.; Palomar - Pardavé, M. J. Electroanal. Chem. 2003, 545, 39. doi: 10.1016/S0022-0728(03)00087-1
-
[31]
(31) Staikov, G.; García, S. G.; Salinas, D. R. ECS Trans. 2010, 25 (34), 3. doi: 10.1149/1.3335487
-
[32]
(32) Popov, B. N.; Zheng, G.; White, R. E. Corrosion Sci. 1994, 36 (12), 2139. doi: 10.1016/0010-938X(94)90012-4
-
[33]
(33) Zheng, G.; Popov, B. N.; White, R. E. J. Electrochem. Soc. 1994, 141 (5), 1220. doi: 10.1149/1.2054899
-
[34]
(34) Kazemi, R.; Kiani, A. Int. J. Hydrog. Energy 2012, 37 (5), 4098. doi: 10.1016/j.ijhydene.2011.11.147
-
[35]
(35) Kuttiyiel, K. A.; Sasaki, K.; Choi, Y.; Su, D.; Liu, P.; Adzic, R. R. Energy Environ. Sci. 2012, 5 (1), 5297. doi: 10.1039/c1ee02067f
-
[36]
(36) Liu, J. P.; Zhou, H. H.; Huang, J. T.; Huang, Z. Y.; Zeng, F. Y.; Kuang, Y. F. Int. J. Hydrog. Energy 2012, 37 (22), 16764. doi: 10.1016/j.ijhydene.2012.08.130
-
[37]
(37) Ni?anc?, F. B.; Öznülüer, T.; Demir, Ü. Electrochim. Acta 2013, 108, 281. doi: 10.1016/j.eleetacta.2013.06.135
-
[38]
(38) Köse, H.; Biçer, M.; Tütüno?lu, Ç.; Ayd?n, A. O.; ?i?man, ?. Electrochim. Acta 2009, 54 (6), 1680. doi: 10.1016/j.electacta.2008.09.059
-
[39]
(39) ?i?man, ?.; Demir, Ü. J. Electroanal. Chem. 2011, 651 (2), 222. doi: 10.1016/j.jelechem.2010.12.005
-
[40]
(40) Herzog, G.; Arrigan, D.W. M. Electroanalysis 2003, 15 (15-16), 1302. doi: 10.1002/elan.200302812
-
[41]
(41) Herzog, G.; Arrigan, D.W. M. TrAC, Trends Anal. Chem. 2005, 24 (3), 208. doi: 10.1016/j.trac.2004.11.014
-
[42]
(42) Orozco, J.; Fernández - Sánchez, C.; Jiménez - Jorquera, C. Environ. Sci. Technol. 2008, 42 (13), 4877. doi: 10.1021/es8005964
-
[43]
(43) Huang, J. F. Talanta 2009, 77 (5), 1694. doi: 10.1016/j.talanta.2008.10.005
-
[44]
(44) Sivasubramanian, R.; Sangaranarayanan, M. V. Talanta 2011, 85 (4), 2142. doi: 10.1016/j.talanta.2011.07.057
-
[45]
(45) Oyamatsu, D.; Kanemoto, H.; Kuwabata, S.; Yoneyama, H. J. Electroanal. Chem. 2001, 497 (1-2), 97. doi: 10.1016/S0022-0728(00)00459-9
-
[46]
(46) Lin, S. Y.; Tsai, T. K.; Lin, C. M.; Chen, C. H.; Chan, Y. C.; Chen, H.W. Langmuir 2002, 18 (14), 5473. doi: 10.1021/la0157364
-
[47]
(47) Gebregziabiher, D. K.; Kim, Y. G.; Thambidurai, C.; Ivanova, V.; Haumesser, P. H.; Stickney, J. L. J. Cryst. Growth 2010, 312 (8), 1271. doi: 10.1016/j.jcrysgro.2009.11.038
-
[48]
(48) Lin, S. X.; Shi, X. Z.; Zhang, X.; Kou, H. H.; Wang, C. M. Appl. Surf. Sci. 2010, 256 (13), 4365. doi: 10.1016/j.apsusc.2010.02.032
-
[49]
(49) Innocenti, M.; Bellandi, S.; Lastraioli, E.; Loglio, F.; Foresti, M. Langmuir 2011, 27 (18), 11704. doi: 10.1021/la202174j
-
[50]
(50) Innocenti, M.; Zangari, G.; Zafferoni, C.; Bencistà, I.; Becucci, L.; Lavacchi, A.; Di Benedetto, F.; Bellandi, S.; Vizza, F.; Foresti, M. L. J. Power Sources 2013, 241, 80. doi: 10.1016/j.jpowsour.2013.04.111
-
[51]
(51) Wang, M. Y.; Wang, Z.; Guo, Z. C. Acta Phys.-Chim. Sin. 2009, 25 (5), 883. [王明涌, 王志, 郭占成. 物理化学学报, 2009, 25 (5), 883.] doi: 10.3866/PKU.WHXB20090511
-
[52]
(52) Herrero, E.; Buller, L. J.; Abruna, H. D. Chem. Rev. 2001, 101 (1), 1897. doi: 10.1021/cr9600363
-
[53]
(53) Anjos, D. M.; Rigsby, M. A.; Wieckowski, A. J. Electroanal. Chem. 2010, 639 (1-2), 8. doi: 10.1016/j.jelechem.2009.10.003
-
[54]
(54) Sudha, V.; Sangaranarayanan, M. V. J. Phys. Chem. B 2002, 106 (10), 2699. doi: 10.1021/jp013544b
-
[55]
(55) Sudha, V.; Sangaranarayanan, M. V. J. Phys. Chem. B 2003, 107 (16), 3907. doi: 10.1021/jp027818m
-
[56]
(56) Sudha, V.; Sangaranarayanan, M. V. J. Chem. Sci. 2005, 117 (3), 207. doi: 10.1007/BF02709289
-
[57]
(57) Kolb, D. M.; Przasnyski, M.; Gerischer, H. J. Electroanal. Chem. Interfacial Electrochem. 1974, 54 (1), 25. doi: 10.1016/0368-1874(74)85093-8
-
[58]
(58) Campbell, F.W.; Compton, R. G. Int. J. Electrochem. Sci 2010, 5 (3), 407.
-
[59]
(59) Campbell, F.W.; Zhou, Y. G.; Compton, R. G. New J. Chem. 2010, 34 (2), 187. doi: 10.1039/b9nj00669a
-
[60]
(60) Zhou, Y. G.; Rees, N. V.; Compton, R. G. ChemPhysChem 2011, 12 (11), 2085. doi: 10.1002/cphc.201100282
-
[61]
(61) Schultze, J.W.; Vetter, K. J. J. Electroanal. Chem. Interfacial Electrochem. 1973, 44 (1), 63.
-
[62]
(62) Swathirajan, S.; Bruckenstein, S. J. Electrochem. Soc. 1982, 129 (6), 1202. doi: 10.1149/1.2124087
-
[63]
(63) Swathirajan, S.; Bruckenstein, S. Electrochim. Acta 1983, 28 (7), 865. doi: 10.1016/0013-4686(83)85162-7
-
[64]
(64) Swathirajan, S.; Bruckenstein, S. J. Electroanal. Chem. Interfacial Electrochem. 1983, 146 (1), 137. doi: 10.1016/S0022-0728(83)80117-X
-
[65]
(65) Szabó, S. Int. Rev. Phys. Chem. 1991, 10 (2), 207. doi: 10.1080/01442359109353258
-
[66]
(66) Ad?i?, R. R.; Minevski, L. V. Electrochim. Acta 1987, 32 (1), 125. doi: 10.1016/0013-4686(87)87020-2
-
[67]
(67) Salie, G.; Bartels, K. Electrochim. Acta 1994, 39 (8-9), 1057. doi: 10.1016/0013-4686(94)E0020-Z
-
[68]
(68) Santos, M. C.; Mascaro, L. H.; Machado, S. A. S. Electrochim. Acta 1998, 43 (16-17), 2263. doi: 10.1016/S0013-4686(97)10171-2
-
[69]
(69) de Levie, R. J. Electroanal. Chem. 2004, 562 (2), 273. doi: 10.1016/j.jelechem.2003.08.027
-
[70]
(70) Zolfaghari, A.; Jerkiewicz, G. J. Electroanal. Chem. 1999, 467 (1-2), 177. doi: 10.1016/S0022-0728(99)00084-4
-
[71]
(71) Radovic-Hrapovic, Z.; Jerkiewicz, G. J. Electroanal. Chem. 2001, 499 (1), 61. doi: 10.1016/S0022-0728(00)00478-2
-
[72]
(72) Zolfaghari, A.; Jerkiewicz, G. J. Electroanal. Chem. 1997, 422 (1-2), 1. doi: 10.1016/S0022-0728(97)00001-6
-
[73]
(73) Abaci, S.; Zhang, L. S.; Shannon, C. J. Electroanal. Chem. 2004, 571 (2), 169. doi: 10.1016/j.jelechem.2004.05.006
-
[74]
(74) Vra?ar, L.; Krstaji?, N.; Neophytides, S. G.; Jakši?, J. Int. J. Hydrog. Energy 2004, 29 (8), 835. doi: 10.1016/S0360-3199(03)00154-X
-
[75]
(75) Blais, S.; Jerkiewicz, G.; Herrero, E.; Feliu, J. M. J. Electroanal. Chem. 2002, 519 (1-2), 111. doi: 10.1016/S0022-0728(01)00735-5
-
[76]
(76) Jerkiewicz, G.; Perreault, F.; Radovic-Hrapovic, Z. J. Phys. Chem. C 2009, 113 (28), 12309. doi: 10.1021/jp900478u
-
[77]
(77) Etzel, K. D.; Bickel, K. R.; Schuster, R. Rev. Sci. Instrum. 2010, 81 (3), 034101. doi: 10.1063/1.3309785
-
[78]
(78) Schuster, R.; Rösch, R.; Timm, A. E. Z. Phys. Chem. 2007, 221 (11-12), 1479. doi: 10.1524/zpch.2007.221.11-12.1479
-
[79]
(79) Etzel, K. D.; Bickel, K. R.; Schuster, R. ChemPhysChem 2010, 11 (7), 1416. doi: 10.1002/cphc.200900981
-
[80]
(80) Swathirajan, S.; Mizota, H.; Bruckenstein, S. J. Phys. Chem. 1982, 86 (13), 2480. doi: 10.1021/j100210a048
-
[81]
(81) Lasia, A. J. Electroanal. Chem. 2004, 562 (1), 23. doi: 10.1016/j.jelechem.2003.07.033
-
[82]
(82) Chun, J. H.; Ra, K. H.; Kim, N. Y. Int. J. Hydrog. Energy 2001, 26 (9), 941. doi: 10.1016/S0360-3199(01)00028-3
-
[83]
(83) Markovic, N. M.; Grgur, B. N.; Ross, P. N. J. Phys. Chem. B 1997, 101 (27), 5405. doi: 10.1021/jp970930d
-
[84]
(84) Chang, B. Y.; Ahn, E.; Park, S. M. J. Phys. Chem. C 2008, 112 (43), 16902. doi: 10.1021/jp805960j
-
[85]
(85) Zolfaghari, A.; Jerkiewicz, G.; Chrzanowski, W.; Wieckowski, A. J. Electrochem. Soc. 1999, 146 (11), 4158. doi: 10.1149/1.1392607
-
[86]
(86) Zinola, C. F.; Rodríguez, J. J. Solid State Electrochem. 2002, 6 (6), 412. doi: 10.1007/s100080100242
-
[87]
(87) Quaiyyum, M. D.; Aramata, A.; Moniwa, S.; Taguchi, S.; Enyo, M. J. Electroanal. Chem. 1994, 373 (1-2), 61. doi: 10.1016/0022-0728(94)03268-8
-
[88]
(88) Palomar - Pardavé, M.; nzález, I.; Batina, N. J. Phys. Chem. B 2000, 104 (15), 3545. doi: 10.1021/jp9931861
-
[89]
(89) Arbib, M.; Zhang, B.; Lazarov, V.; Stoychev, D.; Milchev, A.; Buess-Herman, C. J. Electroanal. Chem. 2001, 510 (1-2), 67. doi: 10.1016/S0022-0728(01)00545-9
-
[90]
(90) Palomar-Pardavé, M.; Garfias-García, E.; Romero-Romo, M.; Ramírez-Silva, M. T.; Batina, N. Electrochim. Acta 2011, 56 (27), 10083. doi: 10.1016/j.electacta.2011.08.105
-
[91]
(91) Quayum, M. E.; Ye, S.; Uosaki, K. J. Electroanal. Chem. 2002, 520 (1-2), 126. doi: 10.1016/S0022-0728(02)00643-5
-
[92]
(92) Palomar-Pardavé, M.; nzález, I.; Soto, A. B.; Arce, E. M. J. Electroanal. Chem. 1998, 443 (1), 125. doi: 10.1016/S0022-0728(97)00496-8
-
[93]
(93) Armstrong, R. D.; Harrison, J. A. J. Electrochem. Soc. 1969, 116 (3), 328. doi: 10.1149/1.2411839
-
[94]
(94) Guo, L.; Hu, K.; Li, W. P.; Zhang, S. T. Chin. J. Appl. Chem. 2013, 30 (2), 214. [郭雷, 胡舸, 李文坡, 张胜涛. 应用化学, 2013, 30 (2), 214.] doi: 10.3724/SP.J.1095.2013.20090
-
[95]
(95) Alanyal?o?lu, M.; Çakal, H.; Öztürk, A. E.; Demir, Ü. J. Phys. Chem. B 2001, 105 (43), 10588. doi: 10.1021/jp004227s
-
[96]
(96) Hölzle, M. H.; Zwing, V.; Kolb, D. M. Electrochim. Acta 1995, 40 (10), 1237. doi: 10.1016/0013-4686(95)00055-J
-
[97]
(97) Martínez-Ruíz, A.; Palomar-Pardavé, M.; Valenzuela-Benavides, J.; Farías, M. H.; Batina, N. J. Phys. Chem. B 2003, 107 (42), 11660. doi: 10.1021/jp027197x
-
[98]
(98) Mendoza-Huizar, L. H.; Rios-Reyes, C. H. J. Solid State Electrochem. 2011, 15 (4), 737. doi: 10.1007/s10008-010-1146-1
-
[99]
(99) Leiva, E. Electrochim. Acta 1996, 41 (14), 2185. doi: 10.1016/0013-4686(96)00050-3
-
[100]
(100) Sanchez, C. G.; Del Popolo, M. G.; Leiva, E. P. M. Surf. Sci. 1999, 421 (1-2), 59. doi: 10.1016/S0039-6028(98)00818-8
-
[101]
(101) Sanchez, C. G.; Leiva, E. P. M.; Kohanoff, J. Langmuir 2001, 17 (7), 2219. doi: 10.1021/la001639j
-
[102]
(102) Oviedo, O. A.; Leiva, E. P. M.; Rojas, M.I. Electrochim. Acta 2006, 51 (17), 3526. doi: 10.1016/j.electacta.2005.10.008
-
[103]
(103) Guo, L.; Tan, J. H.; Li, W. P.; Hu, K.; Zhang, S. T. Prog. Chem. 2013, 25 (11), 1842. [郭雷, 谭建红, 李文坡, 胡舸, 张胜涛. 化学进展, 2013, 25 (11), 1842.] doi: 10.7536/PC130148
-
[104]
(104) Újfalussy, B.; Szunyogh, L.; Bruno, P.; Weinberger, P. Phys. Rev. lett. 1996, 77 (9), 1805. doi: 10.1103/PhysRevLett.77.1805
-
[105]
(105) Oviedo, O. A.; Leiva, E. P. M.; Mariscal, M. M. Phys. Chem. Chem. Phys. 2008, 10 (24), 3561. doi: 10.1039/b801838c
-
[106]
(106) Oviedo, O. A.; Mariscal, M. M.; Leiva, E. P. M. Electrochim. Acta 2010, 55 (27), 8244. doi: 10.1016/j.electacta.2010.03.059
-
[107]
(107) Mariscal, M. M.; Oviedo, O. A.; Leiva, E. P. M. J. Mater. Res. 2012, 27 (14), 1777. doi: 10.1557/jmr.2012.132
-
[108]
(108) Oviedo, O. A.; Negre, C. F. A.; Mariscal, M. M.; Sánchez, C. G.; Leiva, E. P. M. Electrochem. Commun. 2012, 16 (1), 1. doi: 10.1016/j.elecom.2011.12.013
-
[109]
(109) Oviedo, O. A.; Reinaudi, L.; Leiva, E. P. M. Electrochem. Commun. 2012, 21, 14. doi: 10.1016/j.elecom.2012.05.001
-
[110]
(110) Oviedo, O. A.; Reinaudi, L.; Mariscal, M. M.; Leiva, E. P. M. Electrochim. Acta 2012, 76, 424. doi: 10.1016/j.electacta.2012.05.055
-
[1]
-
-
-
[1]
Mahmoud Sayed , Han Li , Chuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117
-
[2]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[3]
Tongqi Ye , Yanqing Wang , Qi Wang , Huaiping Cong , Xianghua Kong , Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128
-
[4]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[5]
Chunguang Rong , Miaojun Xu , Xingde Xiang , Song Liu . 化学热力学熵变计算的教学探讨. University Chemistry, 2025, 40(8): 323-329. doi: 10.12461/PKU.DXHX202409146
-
[6]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[7]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[8]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[9]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[10]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[11]
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
-
[12]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[13]
Yongjian Zhang , Fangling Gao , Hong Yan , Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035
-
[14]
Zhaoyu Wen , Na Han , Yanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001
-
[15]
Yanan Jiang , Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058
-
[16]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[17]
Renqing Lü , Shutao Wang , Fang Wang , Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119
-
[18]
Xu Li , Qinglan Li , Qingji Wang . Research and Practice of Computational Chemistry in Inorganic Chemistry Education. University Chemistry, 2025, 40(7): 345-351. doi: 10.12461/PKU.DXHX202408114
-
[19]
Zhiwen HU , Ping LI , Yulong YANG , Weixia DONG , Qifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172
-
[20]
Shuhui Li , Rongxiuyuan Huang , Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028
-
[1]
Metrics
- PDF Downloads(607)
- Abstract views(1096)
- HTML views(145)