Citation:
LI Hui, LIU Xiang-Xin, ZHANG Yu-Feng, DU Zhong-Ming, YANG Biao, HAN Jun-Feng, BESLAND Marie-Paule. Synthesis of CdS with Large Band Gap Values by a Simple Route at Room Temperature[J]. Acta Physico-Chimica Sinica,
;2015, 31(7): 1338-1344.
doi:
10.3866/PKU.WHXB201504301
-
We report the synthesis of CdS polycrystalline thin films deposited with 0%, 0.88%, 1.78%, 2.58%, and 3.40% (volume fraction, φ) O2 in sputtering Ar gas using a radio frequency magnetron sputtering method. The obtained CdS samples were characterized by X-ray diffraction, scanning electron microscope, Raman spectroscopy, ultraviolet-visible (UV-Vis) absorption spectroscopy, and X-ray photoelectron spectroscopy. O incorporation led to the formation of compact and small CdS grains. The band gap values of the CdS thin films deposited with 0.88%and 1.78% O2 were 2.60 and 2.65 eV, respectively, and were larger than that of CdS (2.48 eV) deposited without O2 gas in sputtering Ar gas. In contrast, the band gap values of the CdS thin films deposited with 2.58% and 3.40% O2 (2.50 and 2.49 eV, respectively) were consistent with that of CdS (2.48 eV) deposited without O2 gas in sputtering Ar+O2 gas. The CdS thin film deposited with 0.88% O2 displayed the highest crystalline quality. Subsequently, CdTe thin films were deposited by radio frequency magnetron sputtering method on the surface of the CdS thin films. The CdTe thin films were characterized before and after high-temperature anneal treatment in a CdCl2 atmosphere. The results showed that O incorporation into CdS led to the formation of considerably more closely packed and larger CdTe grains. The synthesis of CdS with large band gap values at room temperature is facile and effective using the current method. Therefore, the method presented herein is very promising for large-scale industrial production.
-
Keywords:
-
CdS
, - O incorporation,
- Magnetron sputtering,
- CdTe,
- Solar cell
-
-
-
-
[1]
(1) Pan, A.; Wang, S.; Zou, B. Small 2005, 1, 1058.
-
[2]
(2) Wang, L.; Zhao, Y.; Wang, G.; Zhou, H.; Geng, C.; Wuan, C.; Xu, J. Sol. Energy Mater. Sol. Cells 2014, 130, 387. doi: 10.1016/j.solmat.2014.07.027
-
[3]
(3) Hareesh, D.; Du, C. H.; Erin, J.; Xiao, B.; Pradhan, A. K. Appl. Phys. Lett. 2014, 105, 052105. doi: 10.1063/1.4892578
-
[4]
(4) Li, Y.; Yuan, S.; Li, X. Mater. Lett. 2014, 136, 67. doi: 10.1016/j.matlet.2014.08.001
-
[5]
(5) Kumar, S.; Jindal, Z.; Kumari, N.; Verma, N. K. J. Nanopart. Res. 2011, 13, 5465. doi: 10.1007/s11051-011-0534-5
-
[6]
(6) Zhai, C. X.; Zhang, H.; Du, N.; Chen, B. D.; Huang, H.; Wu, Y. L.; Yang, D. R. Nanoscale Res. Lett. 2011, 6, 31.
-
[7]
(7) Li, H.; Yang, B.; Liu, X. X.; Wang, P. J. RSC Adv. 2014, 4, 5046. doi: 10.1039/c3ra44831b
-
[8]
(8) Merdes, S.; Abou-Ras, D.; Mainz, R.; Klenk, R.; Lux-Steiner, M. C.; Meeder, A.; Schock, H.W.; Klaer, J. Prog. Photovolt: Res. Appl. 2013, 21, 88. doi: 10.1002/pip.v21.1
-
[9]
(9) Naba, R. P.; Xiao, C.; Yan, Y. F. J. Mater. Sci.: Mater. Electron. 2014, 25, 1991.
-
[10]
(10) Kong, L.; Li, J.; Chen, G.; Zhu, C.; Liu, W. J. Alloy. Compd. 2013, 5734, 112.
-
[11]
(11) Ullrich, B.; Bagnall, D. M.; Sakai, H.; Segawa, Y. Solid State Communications 1999, 109, 757. doi: 10.1016/S0038-1098(99) 00028-9
-
[12]
(12) Escoffery, C. A. J. Appl. Phys. 1964, 35, 2273. doi: 10.1063/1.1702842
-
[13]
(13) Nakayama, N.; Matsumoto, H.; Yamaguchi, K.; Ikegami, S.; Hioki, Y. Jpn. J. Appl. Phys. 1976, 15, 2281. doi: 10.1143/JJAP.15.2281
-
[14]
(14) Morris, G. C.; Vanderveen, R. Sol. Energy Mater. Sol. Cells 1992, 27, 305. doi: 10.1016/0927-0248(92)90092-4
-
[15]
(15) Narayanan, K. L.; Vijayakumar, K. P.; Nair, K. G. M.; Sundarakkannan, B.; Kesavamoorthy, R. Nucl. Instrum. Meth. B 2000, 160, 471. doi: 10.1016/S0168-583X(99)00602-3
-
[16]
(16) Wu, X.; Dhere, R. G.; Yan, Y.; Romem, M. J.; Zhang, Y.; Zhou, J.; DeHart, C.; Duda, A.; Perkins, C.; To, B. IEEE 2002, 531.
-
[17]
(17) Lisco, F.; Abbas, A; Maniscalco, B.; Kaminski, P. M.; Losurdo, M.; Bass, K.; Claudio, G.; Walls, J. M. Journal of Renewable Sustainable Energy 2014, 6, 011202. doi: 10.1063/1.4828362
-
[18]
(18) Zhang, C. J.; Wu, Y. H.; Cao, H.; Gao, Y. Q.; Zhao, S. R.; Wang, S. L.; Chu, J. H. Acta Phys. Sin. 2013, 62, 158107-(1).
-
[19]
(19) Soo, Y. L.; Sun, W. H.; Weng, S. C.; Lin, Y. S.; Chang, S. L.; Jang, L. Y.; Wu, X.; Yan, Y. Appl. Phys. Letts. 2006, 89, 131908. doi: 10.1063/1.2356995
-
[20]
(20) Takashi, A.; Kashiwaba, Y.; Mamoru, B.; Jun, I.; Sasaki, H. Appl. Surface Science 2001, 175-176, 549.
-
[21]
(21) Mazon-Montijo, D. A.; Sotelo-Lerma, M.; Rodriguez- Fernandez, L.; Huerta, L. Appl. Surface Science 2010, 256, 4280. doi: 10.1016/j.apsusc.2010.02.015
-
[22]
(22) Daniel, M. M.; Colin, A.W.; Michelle, M. G.; Hasitha, M.; Joel, P.; Matthew, O. R.; James, M. B.; William, L. R.; Teresa, M. B. J. Vac. Sci. Technol. A 2015, 33, 021203.
-
[23]
(23) Lee, J.; Song, W.; Yi, J.; Yang, K.; Han, W.; Hwang, J. Thin Solid Films 2003, 431-432, 349.
-
[24]
(24) Li, H.; Liu, X. X. Solar Energy 2015, 115, 603. doi: 10.1016/j. solener.2015.02.044
-
[25]
(25) Li, H.; Liu, X. X.; Lin, Y. S.; Yang, B.; Du, Z. M. Phys. Chem. Chem. Phys. 2015, 17, 11150. doi: 10.1039/C5CP00564G
-
[1]
-
-
-
[1]
Kaihui Huang , Boning Feng , Xinghua Wen , Lei Hao , Difa Xu , Guijie Liang , Rongchen Shen , Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204
-
[2]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[3]
Fengying Zhang , Yanglin Mei , Yuman Jiang , Shenshen Zheng , Kaibo Zheng , Ying Zhou . Research progress of transient absorption spectroscopy in solar energy conversion and utilization. Acta Physico-Chimica Sinica, 2025, 41(9): 100118-0. doi: 10.1016/j.actphy.2025.100118
-
[4]
Nengmin ZHU , Wenhao ZHU , Xiaoyao YIN , Songzhi ZHENG , Hao LI , Zeyuan WANG , Wenhao WEI , Xuanheng CHEN , Weihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419
-
[5]
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025
-
[6]
Yameen Ahmed , Xiangxiang Feng , Yuanji Gao , Yang Ding , Caoyu Long , Mustafa Haider , Hengyue Li , Zhuan Li , Shicheng Huang , Makhsud I. Saidaminov , Junliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057
-
[7]
Yawen Guo , Dawei Li , Yang Gao , Cuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050
-
[8]
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011
-
[9]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[10]
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
-
[11]
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
-
[12]
Mingxuan Qi , Lanyu Jin , Honghe Yao , Zipeng Xu , Teng Cheng , Qi Chen , Cheng Zhu , Yang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088
-
[13]
Ying Liang , Yuheng Deng , Shilv Yu , Jiahao Cheng , Jiawei Song , Jun Yao , Yichen Yang , Wanlei Zhang , Wenjing Zhou , Xin Zhang , Wenjian Shen , Guijie Liang , Bin Li , Yong Peng , Run Hu , Wangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098
-
[14]
Ruonan Li , Shijie Liang , Yunhua Xu , Cuifen Zhang , Zheng Tang , Baiqiao Liu , Weiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037
-
[15]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006
-
[16]
Yuan CONG , Yunhao WANG , Wanping LI , Zhicheng ZHANG , Shuo LIU , Huiyuan GUO , Hongyu YUAN , Zhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219
-
[17]
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007
-
[18]
Chao Liu , Huan Yu , Jiaming Li , Xi Yu , Zhuangzhi Yu , Yuxi Song , Feng Zhang , Qinfang Zhang , Zhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075
-
[19]
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
-
[20]
Jianjun Liu , Xue Yang , Chi Zhang , Xueyu Zhao , Zhiwei Zhang , Yongmei Chen , Qinghong Xu , Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031
-
[1]
Metrics
- PDF Downloads(275)
- Abstract views(673)
- HTML views(30)