Citation:
HU Hai-Feng, HE Tao. Controlled Aspect Ratio Modulation of ZnO Nanorods via Indium Doping[J]. Acta Physico-Chimica Sinica,
;2015, 31(7): 1421-1429.
doi:
10.3866/PKU.WHXB201504221
-
In-doped ZnO nanorods (NRs) were synthesized by hydrothermal method. The X-ray diffraction (XRD) patterns showed that the ZnO lattices expanded upon In doping. According to the scanning electron microscopy (SEM) images, the aspect ratio (length- to- width ratio) of the ZnO NRs decreased as the concentration of In(III) in the precursor solution increased from 0% to 1.0% (atomic fraction, x), and increased with further increases in the In(III) concentration from 1.0%to 5.0%. The nonlinear modulation of the aspect ratio of ZnO NRs is believed to be due to the competition between the subst itutional doping of In3+ (InZn) and formation of InOOH intermediate, both of which are closely related to the behavior of In(OH)4-. In(OH)4- can be adsorbed onto zinc polar plane, and thus inhibits adsorption of Zn(OH)42- growth units. Furthermore, In(OH)4- can convert into InOOH, which can act as a crystal binder and enhance growth along the (002) plane. InZn can disrupt the zinc polar plane, resulting in the suppression of growth along the (002) facet. Therefore, the aspect ratio of ZnO NRs can be controllably modulated by changing the In concentration in the precursor solution. The current study furthers our understanding of the growth mechanism of In-doped ZnO, and presents a feasible method to prepare doped-ZnO NRs for real applications.
-
Keywords:
-
ZnO
, - In-doping,
- Hydrothermal method,
- Aspect ratio,
- Growth model
-
-
-
-
[1]
(1) Tam, K. H.; Cheung, C. K.; Leung, Y. H.; Djuriši?, A. B.; Ling, C. C.; Beling, C. D.; Fung, S.; Kwok, W. M.; Chan, W. K.; Phillips, D. L.; Ding, L.; Ge, W. K. J. Phys. Chem. B 2006, 110, 20865. doi: 10.1021/jp063239w
-
[2]
(2) Zhu, H. L.; Yang, D. R.; Zhang, H. Inorg. Mater. 2006, 42 (11), 1210. doi: 10.1134/S0020168506110070
-
[3]
(3) Kong, X. Y.; Ding, Y.; Yang, R. S.; Wang, Z. L. Science 2004, 303, 1348. doi: 10.1126/science.1092356
-
[4]
(4) Yen, K. Y.; Chiu, C. H.; Hsiao, C. Y.; Li, C.W.; Chou, C. H.; Lo, K. Y.; Chen, T. P.; Lin, C. H.; Lin, T. Y.; ng, J. R. J. Crystal Growth 2014, 387, 91. doi: 10.1016/j.jcrysgro.2013.10.042
-
[5]
(5) Bae, S. Y.; Na, C.W.; Kang, J. H.; Park, J. J. Phys. Chem. B 2005, 109, 2526. doi: 10.1021/jp0458708
-
[6]
(6) Xu, L.; Su, Y.; Chen, Y. Q.; Xiao, H. H.; Zhu, L.; Zhou, Q. T.; Li, S. J. Phys. Chem. B 2006, 110, 6637. doi: 10.1021/jp057476v
-
[7]
(7) Wang, B. Q.; Xia, C. H.; Fu, Q.; Wang, P.W.; Shan, X. D.; Yu, D. P. Acta Phys. -Chim. Sin. 2008, 24 (7), 1165. [王百齐, 夏春辉, 富强, 王朋伟, 单旭东, 俞大鹏. 物理化学学报, 2008, 24 (7), 1165.] doi: 10.3866/PKU.WHXB20080708
-
[8]
(8) Chen, H. S.; Qi, J. J.; Huang, Y. H.; Liao, Q. L.; Zhang, Y. Acta Phys. -Chim. Sin. 2007, 23 (1), 55. [陈红升, 齐俊杰, 黄运华, 廖庆亮, 张跃. 物理化学学报, 2007, 23 (1), 55.] doi: 10.1016/S1872-1508(07)60005-9
-
[9]
(9) Wang, J.; Zhuang, H. Z.; Xue, C. S.; Li, J. L.; Xu, P. Acta Phys. -Chim. Sin. 2010, 26 (10), 2840. [王杰, 庄惠照, 薛成山, 李俊林, 徐鹏. 物理化学学报, 2010, 26 (10), 2840.] doi: 10.3866/PKU.WHXB20101024
-
[10]
(10) Ghosh, S.; Saha, M.; De, S. K. Nanoscale 2014, 6, 7039. doi: 10.1039/c3nr05608b
-
[11]
(11) Su, J.; Li, H. F.; Huang, Y. H.; Xing, X. J.; Zhao, J.; Zhang, Y. Nanoscale 2011, 3, 2182. doi: 10.1039/c1nr10018a
-
[12]
(12) Ismardi, A.; Tiong, T. Y.; Dee, C. F.; Majlis, B. Y. AIP Conf. Proc. 2011, 1341, 25.
-
[13]
(13) Kumar, G. M.; Park, J. J. Colloid Interface Sci. 2014, 430, 229. doi: 10.1016/j.jcis.2014.05.045
-
[14]
(14) Pradhan, D.; Leung, K. T. Langmuir 2008, 24, 9707. doi: 10.1021/la8008943
-
[15]
(15) Xia, Y. J.; Guan, Z. S.; He, T. Chin. Phys. B 2014, 23 (8), 087701-1. [夏玉静, 管自生, 贺涛. 中国物理B, 2014, 23 (8), 087701-1.] doi: 10.1088/1674-1056/23/8/087701
-
[16]
(16) Yang, F.; Liu, W. H.; Wang, X.W.; Zheng, J.; Shi, R. Y.; Zhao, H.; Yang, H. Q. ACS Appl. Mater. Interfaces 2012, 4, 3852. doi: 10.1021/am300561w
-
[17]
(17) Bae, S. Y.; Choi, H. C.; Na, C.W.; Park, J. App. Phys. Lett. 2005, 86, 033102. doi: 10.1063/1.1851591
-
[18]
(18) Ahmad, M.; Sun, H.; Zhu, J. ACS Appl. Mater. Interfaces 2011, 3, 1299. doi: 10.1021/am200099c
-
[19]
(19) Height, M. J.; Mädler, L.; Pratsinis, S. E. Chem. Mater. 2006, 18 (2), 572. doi: 10.1021/cm052163y
-
[20]
(20) Fu, Z. P.; Yang, B. F.; Li, L.; Dong, W.W.; Jia, C.; Wu, W. J. Phys.: Condes. Matter 2003, 15, 2867. doi: 10.1088/0953-8984/15/17/335
-
[21]
(21) Mahmood, K.; Park, S. B.; Sung, H. J. J. Mater. Chem. C 2013, 1, 3138. doi: 10.1039/c3tc00082f
-
[22]
(22) Wanger, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Muilenberg, G. E. Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer Corp.: Eden Prairie, 1979; pp 1-190.
-
[23]
(23) Faur, M.; Faur, M.; Jayne, D. T.; radia, M.; radia, C. Surface and Interface Analysis 1990, 15, 641.
-
[24]
(24) Kazmerski, L. L.; Jamjoum, O.; Ireland, P. J.; Deb, S. K.; Mickelsen, R. A.; Chen, W. J. Vac. Sci. Technol. 1981, 19, 467. doi: 10.1116/1.571040
-
[25]
(25) Lin, A.W. C.; Armstrong, N. R.; Kuwana, T. Anal. Chem. 1977, 49 (8), 1228. doi: 10.1021/ac50016a042
-
[26]
(26) McGuire, G. E.; Schweitzer, G. K.; Carlson, T. A. Inorg. Chem. 1973, 12, 2450. doi: 10.1021/ic50128a045
-
[27]
(27) Nefedov, V. I.; Gati, D.; Dzhurinskii, B. F.; Sergushin, N. P.; Salyn, Y. V. Zh. Neorg. Khimii 1975, 20, 2307.
-
[28]
(28) Cahen, D.; Ireland, P. J.; Kazmerski, L. L.; Thiel, F. A. J. Appl. Phys. 1985, 57, 4761. doi: 10.1063/1.335341
-
[29]
(29) Bertrand, P. A. J. Vac. Sci. Technol. 1981, 18, 28. doi: 10.1116/1.570694
-
[30]
(30) Clark, D. T.; Fok, T. Thin Solid Films 1980, 70 (2), 261. doi: 10.1016/0040-6090(80)90367-3
-
[31]
(31) Fan, J. C. C.; odenough, J. B. J. Appl. Phys. 1977, 48, 3524. doi: 10.1063/1.324149
-
[32]
(32) Hewitt, R.W.; Winograd, N. J. Appl. Phys. 1980, 51, 2620. doi: 10.1063/1.327991
-
[33]
(33) Wang, X. H.; Sun, L. X. One Process of Orthorhombic InOOH Synthesized by Microemulsion-Solvothermal Method. CN 103241767 A, 2013-08-14. [王晓华, 孙兰轩. 一种斜方晶 InOOH 的微乳-溶剂热工艺: 中国, CN 103241767 A [P]. 2013- 08-14.]
-
[34]
(34) Liu, Q. S.; Lu, W. G.; Ma, A. H.; Tang, J. K.; Lin, J.; Fang, J. Y. J. Am. Chem. Soc. 2005, 127, 5276. doi: 10.1021/ja042550t
-
[35]
(35) Ahmad, M.; Zhao, J.; Iqbal, J.; Miao, W.; Xie, L.; Mo, R. G.; Zhu, J. J. Phys. D: Appl. Phys. 2009, 42, 165406. doi: 10.1088/0022-3727/42/16/165406
-
[36]
(36) vender, K.; Boyle, D. S.; Kenway, P. B.; O'Brien, P. J. Mater. Chem. 2004, 14, 2575. doi: 10.1039/b404784b
-
[37]
(37) Wood, S. A.; Samson, I. M. Ore Geol. Rev. 2006, 28, 57. doi: 10.1016/j.oregeorev.2003.06.002
-
[38]
(38) Wang, B. G.; Callahan, M. J.; Xu, C. C.; Bouthillette, L. O.; Giles, N. C.; Bliss, D. F. J. Cryst. Growth 2007, 304, 73. doi: 10.1016/j.jcrysgro.2007.01.047
-
[39]
(39) Morales, A. E.; Zaldivar, M. H.; Pal, U. Opt. Mater. 2006, 29, 100. doi: 10.1016/j.optmat.2006.03.010
-
[40]
(40) Wang, B. The Preparation of In2O3 Nanomaterials with Different Phase Structures and Their Gas Sensing Properties. M. S. Dissertation, Beijing University of Chemical Technology, Beijing, 2011. [王彬. 不同晶型氧化铟纳米材料的制备及其气敏性能研究[D]. 北京: 北京化工大学, 2011.]
-
[41]
(41) Zhuang, Z. B.; Peng, Q.; Liu, J. F.; Wang, X.; Li, Y. D. Inorg. Chem. 2007, 46, 5179. doi: 10.1021/ic061999f
-
[42]
(42) Xu, X. X.; Wang, X. Inorg. Chem. 2009, 48, 3890. doi: 10.1021/ic802449w
-
[43]
(43) Chen, C. L.; Chen, D. R.; Jiao, X. L.; Wang, C. Q. Chem. Commun. 2006, 4632.
-
[44]
(44) Li, Z. H.; Xie, Z. P.; Zhang, Y. F.; Wu, L.; Wang, X. X.; Fu, X. Z. J. Phys. Chem. C 2007, 111, 18348. doi: 10.1021/jp076107r
-
[45]
(45) Yu, D. B.; Yu, S. H.; Zhang, S. Y.; Zuo, J.; Wang, D. B.; Qian, Y. T. Adv. Funct. Mater. 2003, 13, 497. doi: 10.1002/adfm.200304303
-
[46]
(46) Hafeez, M.; Zhai, T. Y.; Bhatti, A. S.; Bando, Y.; lberg, D. Cryst. Growth Des. 2012, 12, 4935. doi: 10.1021/cg300870y
-
[47]
(47) Pacholski, C.; Kornowski, A.; Weller, H. Angew. Chem. Int. Edit. 2002, 41, 1188.
-
[48]
(48) Sangwal, K. J. Cryst. Growth 1998, 192, 200. doi: 10.1016/S0022-0248(98)00424-2
-
[49]
(49) Yang, H. X. Solvothermal Synthesis of In2O3 and CeO2 Nanostructures: Structural Studies and Application. Ph. D. Dissertation, Shandong University, Jinan, 2013. [杨红晓. 溶剂热法合成氧化铟、氧化铈纳米结构及其性能研究[D]. 济南: 山东大学, 2013.]
-
[1]
-
-
-
[1]
Bing Shen , Tongwei Yuan , Wenshuang Zhang , Yang Chen , Jiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490
-
[2]
Junqing WEN , Ruoqi WANG , Jianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243
-
[3]
Haoying ZHAI , Lanzong WEN , Wenjie LIAO , Qin LI , Wenjun ZHOU , Kun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320
-
[4]
Hongpeng He , Mengmeng Zhang , Mengjiao Hao , Wei Du , Haibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043
-
[5]
Tong WANG , Qinyue ZHONG , Qiong HUANG , Weimin GUO , Xinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011
-
[6]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[7]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[8]
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002
-
[9]
Sumiya Akter Dristy , Md Ahasan Habib , Shusen Lin , Mehedi Hasan Joni , Rutuja Mandavkar , Young-Uk Chung , Md Najibullah , Jihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079
-
[10]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[11]
Shujun Ning , Zhiyuan Wei , Zhening Chen , Tianmin Wu , Lu Zhang . Curvature and defect formation synergistically promote the photocatalysis of ZnO slabs. Chinese Chemical Letters, 2025, 36(7): 111057-. doi: 10.1016/j.cclet.2025.111057
-
[12]
Jie Ren , Hao Zong , Yaqun Han , Tianyi Liu , Shufen Zhang , Qiang Xu , Suli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350
-
[13]
Qinghong Pan , Huafang Zhang , Qiaoling Liu , Donghong Huang , Da-Peng Yang , Tianjia Jiang , Shuyang Sun , Xiangrong Chen . A self-powered cathodic molecular imprinting ultrasensitive photoelectrochemical tetracycline sensor via ZnO/C photoanode signal amplification. Chinese Chemical Letters, 2025, 36(1): 110169-. doi: 10.1016/j.cclet.2024.110169
-
[14]
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
-
[15]
Liangbo Zhang , Jun Cheng , Yahui Shi , Kunjie Hou , Qi An , Jingyi Li , Baohui Cui , Fei Chen . Efficient removal of tetracycline hydrochloride by ZnO/HNTs composites under visible light: Kinetics, degradation pathways and mechanism. Chinese Chemical Letters, 2025, 36(7): 110400-. doi: 10.1016/j.cclet.2024.110400
-
[16]
Bin Feng , Tao Long , Ruotong Li , Yuan-Li Ding . Rationally constructing metallic Sn-ZnO heterostructure via in-situ Mn doping for high-rate Na-ion batteries. Chinese Chemical Letters, 2025, 36(2): 110273-. doi: 10.1016/j.cclet.2024.110273
-
[17]
Pengyu Chen , Beibei Chen , Man He , Yuxi Zhou , Lei Lei , Jian Han , Bingsheng Zhou , Ligang Hu , Bin Hu . Nanoplastics and nano-ZnO facilitate Cd accumulation in zebrafish larvae via a distinct pathway: Revelation by LA-ICP-MS imaging. Chinese Chemical Letters, 2025, 36(2): 109908-. doi: 10.1016/j.cclet.2024.109908
-
[18]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020
-
[19]
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
-
[20]
Yajin Li , Huimin Liu , Lan Ma , Jiaxiong Liu , Dehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005
-
[1]
Metrics
- PDF Downloads(371)
- Abstract views(559)
- HTML views(4)