Citation: YANG Fan, YU Peng-Yun, ZHAO Juan, ZHAO Yan, WANG Jian-Ping. Intermolecular Hydrogen Bonding Structural Dynamics in Ethylene Glycol by Femtosecond Nonlinear Infrared Spectroscopy[J]. Acta Physico-Chimica Sinica, ;2015, 31(7): 1275-1282. doi: 10.3866/PKU.WHXB201504211 shu

Intermolecular Hydrogen Bonding Structural Dynamics in Ethylene Glycol by Femtosecond Nonlinear Infrared Spectroscopy

  • Received Date: 14 January 2015
    Available Online: 21 April 2015

    Fund Project: 国家自然科学基金(21103200, 20727001, 91121020) (21103200, 20727001, 91121020)中国科学院重大科研装备研制项目(Y2201220)资助 (Y2201220)

  • In this work, we examined the structural and ―OH stretching vibrational dynamics of ethylene glycol (EG) solvated in acetonitrile (MeCN), acetone (AC), tetrahydrofuran (THF), and dimethylsulfoxide (DMSO) using steady-state linear infrared (IR) spectroscopy and ultrafast pump-probe IR spectroscopy. The results suggested that the frequency position, bandwidth, and vibrational relaxation of the ―OH stretching vibration that participate in the formation of intermolecular hydrogen bonds (IHBs) were strongly influenced by the type of solvent. At least two types of IHBs were detected in the EG solution including clustered solute-solute IHBs and solute-solvent IHBs. Quantum chemical calculations predicted a similar solvent dependence of the ―OH stretching vibrational frequency to that observed in the IR experiments. Furthermore, we found that the IHB-involved ―OH stretching mode in the case of solute-solvent clusters displayed the slowest population relaxation dynamics in the case of EG in MeCN. The relaxation became slightly faster in AC and even faster in THF. The fastest dynamics was observed in the case of EG in DMSO. However, in each solvent environment examined, the IHB-involved ―OH stretching mode in the solute-solute cluster displayed the fastest population relaxation. The results obtained in this study provide further insights into different IHB structural dynamics in co-existing solute-solute and solutesolvent clusters.

  • 加载中
    1. [1]

      (1) Nelson, H. C. M.; Finch, J. T.; Luisi, B. F.; Klug, A. Nature 1987, 330 (6145), 221. doi: 10.1038/330221a0

    2. [2]

      (2) Sundaralingam, M.; Sekharudu, Y. C. Science 1989, 244 (4910), 1333. doi: 10.1126/science.2734612

    3. [3]

      (3) Foti, M. C.; Barclay, L. R. C.; In ld, K. U. J. Am. Chem. Soc. 2002, 124 (43), 12881. doi: 10.1021/ja020757l

    4. [4]

      (4) Kim, S. G.; Kim, K. H.; Kim, Y. K.; Shin, S. K.; Ahn, K. H. J. Am. Chem. Soc. 2003, 125 (45), 13819. doi: 10.1021/ja037031p

    5. [5]

      (5) Clarkson, J. R.; Baquero, E.; Shubert, V. A.; Myshakin, E. M.; Jordan, K. D.; Zwier, T. S. Science 2005, 307 (5714), 1443. doi: 10.1126/science.1106977

    6. [6]

      (6) Markle, T. F.; Mayer, J. M. Angew. Chem. 2008, 120 (4), 750.

    7. [7]

      (7) Stillinger, F. H. Science 1980, 209 (4455), 451. doi: 10.1126/science.209.4455.451

    8. [8]

      (8) Deàk, J. C.; Rhea, S. T.; Iwaki, L. K.; Dlott, D. D. J. Phys. Chem. A 2000, 104 (21), 4866. doi: 10.1021/jp994492h

    9. [9]

      (9) Woutersen, S.; Emmerichs, U.; Bakker, H. J. Science 1997, 278 (5338), 658. doi: 10.1126/science.278.5338.658

    10. [10]

      (10) Kropman, M. F.; Nienhuys, H. K.; Woutersen, S.; Bakker, H. J. J. Phys. Chem. A 2001, 105 (19), 4622. doi: 10.1021/jp010057n

    11. [11]

      (11) Kropman, M. F.; Bakker, H. J. Science 2001, 291 (5511), 2118. doi: 10.1126/science.1058190

    12. [12]

      (12) Woutersen, S.; Bakker, H. J. Nature 1999, 402 (6761), 507. doi: 10.1038/990058

    13. [13]

      (13) Bakker, H. J.; Woutersen, S.; Nienhuys, H. K. Chem. Phys. 2000, 258 (2-3), 233.

    14. [14]

      (14) Piletic, I. R.; Moilanen, D. E.; Levinger, N. E.; Fayer, M. D. J. Am. Chem. Soc. 2006, 128 (32), 10366. doi: 10.1021/ja062549p

    15. [15]

      (15) Fecko, C. J.; Loparo, J. J.; Roberts, S. T.; Tokmakoff, A. J. Chem. Phys. 2005, 122 (5), 054506. doi: 10.1063/1.1839179

    16. [16]

      (16) Bakker, H. J.; Gilijamse, J. J.; Lock, A. J. ChemPhysChem 2005, 6 (6), 1146.

    17. [17]

      (17) Roberts, S. T.; Ramasesha, K.; Tokmakoff, A. Accounts Chem. Res. 2009, 42 (9), 1239. doi: 10.1021/ar900088g

    18. [18]

      (18) Li, Q.; Wu, G.; Yu, Z. J. Am. Chem. Soc. 2006, 128 (5), 1438. doi: 10.1021/ja0569149

    19. [19]

      (19) Li, Q.; Wang, N.; Yu, Z. Journal of Molecular Structure- Theorem 2008, 862 (1-3), 74.

    20. [20]

      (20) Li, D.; Yang, F.; Han, C.; Zhao, J.; Wang, J. J. Phys. Chem. Lett. 2012, 3 (23), 3665. doi: 10.1021/jz301652v

    21. [21]

      (21) Woutersen, S.; Emmerichs, U.; Bakker, H. J. J. Chem. Phys. 1997, 107 (5), 1483. doi: 10.1063/1.474501

    22. [22]

      (22) Asbury, J. B.; Steinel, T.; Stromberg, C.; Gaffney, K. J.; Piletic, I. R.; Fayer, M. D. J. Chem. Phys. 2003, 119 (24), 12981.

    23. [23]

      (23) Laenen, R.; Simeonidis, K. Chem. Phys. Lett. 1999, 299 (6), 589. doi: 10.1016/S0009-2614(98)01303-7

    24. [24]

      (24) Nagy, P. I.; Dunn, W. J.; Ala na, G.; Ghio, C. J. Am. Chem. Soc. 1992, 114 (12), 4752. doi: 10.1021/ja00038a044

    25. [25]

      (25) Trindle, C.; Crum, P.; Douglass, K. J. Phys. Chem. A 2003, 107 (32), 6236. doi: 10.1021/jp034598j

    26. [26]

      (26) Foti, M. C.; DiLabio, G. A.; In ld, K. U. J. Am. Chem. Soc. 2003, 125 (47), 14642. doi: 10.1021/ja036168c

    27. [27]

      (27) Lopes Jesus, A. J.; Rosado, M. T. S.; Leitão, M. L. P.; Redinha, J. S. J. Phys. Chem. A 2003, 107 (19), 3891. doi: 10.1021/jp027123l

    28. [28]

      (28) Crittenden, D. L.; Thompson, K. C.; Jordan, M. J. T. J. Phys. Chem. A 2005, 109 (12), 2971. doi: 10.1021/jp045233h

    29. [29]

      (29) Han, C.; Zhao, J.; Yang, F.; Wang, J. J. Phys. Chem. A 2013, 117 (29), 6105. doi: 10.1021/jp400096a

    30. [30]

      (30) Crupi, V.; Maisano, G.; Majolino, D.; Migliardo, P.; Venuti, V. J. Phys. Chem. A 2000, 104 (17), 3933. doi: 10.1021/jp993900e

    31. [31]

      (31) Ma, X.; Wang, J. J. Phys. Chem. A 2009, 113 (21), 6070. doi: 10.1021/jp9016085

    32. [32]

      (32) Olschewski, M.; Lindner, J.; Vöhringer, P. Angew. Chem. Int. Edit. 2013, 52 (9), 2602. doi: 10.1002/anie.v52.9

    33. [33]

      (33) Liu, Y. L.; Yang, F.; Wang, J. P. Acta Chim. Sin. 2013, 71(5), 761. [刘英亮, 杨帆, 王建平. 化学学报, 2013, 71 (5), 761.] doi: 10.6023/A13020166

    34. [34]

      (34) Yang, F.; Liu, Y. L.; Wang, J. P. Acta Phys. -Chim. Sin. 2012, 28 (4), 759. [杨帆, 刘英亮, 王建平. 物理化学学报, 2012, 28 (4), 759.] doi: 10.3866/PKU.WHXB201202023

    35. [35]

      (35) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78 (6), 4066. doi: 10.1063/1.445134

    36. [36]

      (36) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83 (2), 735. doi: 10.1063/1.449486

    37. [37]

      (37) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision A. 02; Gaussian Inc.: Pittsburgh, PA, 2009.


  • 加载中
    1. [1]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    2. [2]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    3. [3]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    4. [4]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    5. [5]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    6. [6]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    7. [7]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    8. [8]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    9. [9]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    10. [10]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    11. [11]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    12. [12]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    13. [13]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    14. [14]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    15. [15]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    16. [16]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    17. [17]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    18. [18]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    19. [19]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    20. [20]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

Metrics
  • PDF Downloads(278)
  • Abstract views(512)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return